

ibaPQU-S

Power Quality Measurement Unit according to IEC61000-4-30 Ed. 3 Class A

Manual Issue1.7

Manufacturer

iba AG

Koenigswarterstraße 44

90762 Fuerth

Germany

Contacts

 Headquarters
 +49 911 97282-0

 Support
 +49 911 97282-14

 Engineering
 +49 911 97282-13

 E-Mail
 iba@iba-ag.com

 Web
 www.iba-ag.com

This manual must not be circulated or copied, or its contents utilized and disseminated, without our express written permission. Any breach or infringement of this provision will result in liability for damages.

©iba AG 2025, All rights reserved

The content of this publication has been checked for compliance with the described hardware and software. Nevertheless, deviations cannot be excluded completely so that the full compliance is not guaranteed. However, the information in this publication is updated regularly. Required corrections are contained in the following regulations or can be downloaded on the Internet.

The current version is available for download on our web site http://www.iba-ag.com.

Issue	Date	Revision	Author	Version HW/FW
1.7	11-2025	Discontinuation ibaMS16xDO-2A module	st	02.11.016

Windows® is a label and registered trademark of the Microsoft Corporation. Other product and company names mentioned in this manual can be labels or registered trademarks of the corresponding owners.

Certification

The product is certified according to the European standards and directives. This product meets the general safety and health requirements.

Other international and national standards were observed.

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

Contents

1	About	About this documentation		
	1.1	Target group and previous knowledge	9	
	1.2	Notations	9	
	1.3	Used symbols	10	
2	About	ibaPQU-S	11	
	2.1	Modular concept	11	
	2.2	Measurements according to EN50160	12	
3	Scope	of delivery	13	
4	Safety	instructions	14	
	4.1	Intended use	14	
	4.2	Special safety instructions	14	
5	System	n requirements	16	
6	Mount	ting, connecting, dismounting	17	
	6.1	Mounting	17	
	6.2	Connecting	18	
	6.3	Dismounting	18	
7	Device	description	19	
	7.1	Device views	19	
	7.2	Indicating elements	20	
	7.2.1	Operating status L1L4	20	
	7.2.2	LEDs L5L8	21	
	7.2.3	Indicators digital inputs L10L17	21	
	7.3	Operating elements	21	
	7.3.1	On/Off switch S11	21	
	7.3.2	Rotary switches S1 and S2	21	
	7.4	Communication interfaces	22	
	7.4.1	Fiber optic connections X10 and X11	22	
	7.4.2	Network connection X22	22	
	7.5	Digital inputs X5	23	
	7.5.1	Connection diagram/pin assignment	23	

4

	7.5.2	Debounce filter inputs	23
	7.6	Voltage supply	25
	7.6.1	Voltage supply X14	25
	7.6.2	Buffer voltage X30	25
8	Measur	ring principles and parameters	26
	8.1	Grid types	26
	8.2	Signals and calculated characteristic values	26
	8.3	System integration	29
	8.4	Time synchronization	29
	8.5	Signal processing	29
	8.5.1	Sampling rate	29
	8.5.2	Signal filtering	30
	8.5.3	Automatic range switching	31
9	Update	s	32
	9.1	Update via ibaPDA	32
	9.2	Update of the modules	33
10	Configu	ration with ibaPDA	34
	10.1	First steps	34
	10.1.1	Overview of the modules in ibaPDA	41
	10.2	Basic modules in I/O Manager	43
	10.2.1	PQU-S – General tab	43
	10.2.2	PQU-S – Analog tab	45
	10.2.3	PQU-S – Digital tab	46
	10.2.4	PQU-S – Diagnostics tab	46
	10.2.5	ibaPQU-S – General tab	48
	10.2.6	ibaPQU-S – Digital tab	48
	10.2.7	ibaPQU-S – Status tab	49
	10.2.8	Diagnostics – General tab	50
	10.2.9	Diagnostics – Digital tab	51
	10.2.9 10.3	Diagnostics – Digital tab Submodules to calculate characteristic values	
			52

	10.3.3	EN50160 submodule: Supply voltage variation	59
	10.3.4	EN50160 submodule: Flicker severity	60
	10.3.5	EN50160 submodule: Supply voltage unbalance	62
	10.3.6	EN50160 submodule: Harmonic voltage	63
	10.3.7	EN50160 submodule: Mains signalling voltage	65
	10.3.8	EN50160 submodule: Voltage events	67
	10.3.9	Basic submodule	69
	10.3.10	Phasor submodule	71
	10.3.11	Power submodule	73
	10.3.12	Spectrum submodule	76
	10.3.13	Unbalance submodule	79
	10.3.14	Flicker severity submodule	82
	10.3.15	Aggregation submodule	83
	10.3.16	Commutation notches submodule	89
	10.3.17	Events submodule	90
11	Technica	l data	93
	11.1	Main data	93
	11.2	Declaration of conformity	94
	11.3	Interfaces	94
	11.4	Digital inputs	95
	11.5	Grid characteristics	96
	11.6	Dimensions	97
	11.7	Connection diagrams	99
	11.7.1	Pin assignment power supply X14	99
	11.7.2	Pin assignment digital inputs X5	99
	11.8	Example for FO budget calculation	. 100
12	Accessor	ries and related products	. 102
	12.1	Backplane panels	. 102
	12.1.1	ibaPADU-S-B4S	
	12.1.2	ibaPADU-S-B1S	
	12.2	Mounting system for central unit	
	12.2.1	ibaPADU-S-B	

	12.3	Mounting systems for ibaPADU-S-B4S	. 109
	12.3.1	Mounting angles	. 109
	12.3.2	Mounting panel 19"	. 111
	12.3.3	Module carrier	. 116
	12.4	Terminal blocks	. 117
	12.5	I/O modules iba modular system	. 118
	12.6	FO cards and FO cables	. 118
	12.7	iba software	. 119
13	Appendi	x	. 120
	13.1	Calculating characteristic values	. 120
	13.1.1	RMS (Root Mean Square)	. 120
	13.1.2	Rectified value	. 120
	13.1.3	Peak value	. 120
	13.1.4	Form factor	. 120
	13.1.5	Crest factor	. 120
	13.1.6	Frequency	. 120
	13.1.7	Harmonics, interharmonics, phase angle	. 121
	13.1.8	THD (Total Harmonic Distorsion)	. 121
	13.1.9	Flicker	. 121
	13.1.10	Power / Energy	. 121
	13.1.11	Voltage balance / Unbalance	. 123
	13.1.12	Interference factor	. 124
	13.1.13	Commutation notches	. 125
	13.1.14	Events	. 126
	13.2	Connection examples	. 128
	13.2.1	Connection example 1-pase	. 128
	13.2.2	Connection example star connection	. 128
	13.2.3	Connection example delta connection	. 129
	13.2.4	Connection with instrument transformers	. 129
14	Certifica	te	. 131
15	Support	and contact	122

1 About this documentation

This documentation describes the design, application and operation of the *ibaPQU-S* device. Information on the structure, application and operation of the I/O modules can be found in separate documentation.

Other documentation

For a general description of the iba modular system and additional information about layout, application and operation of the modules, please refer to the dedicated documentations.

The documentation of the iba modular system is part of the data medium "iba Software & Manuals".

The documentation of the iba modular system comprises the following manuals:

Central units

The manuals of the central units contain information about:

- Scope of delivery
- System requirements
- Device description
- Mounting/dismounting
- Start-up
- Configuration
- Technical data
- Accessories

Modules

The manuals of the single modules contain specific information on the individual module. For example:

- Short description
- Scope of delivery
- Product characteristics
- Configuration
- Description of the functions
- Technical data
- Connection diagram

1.1 Target group and previous knowledge

This documentation is aimed at qualified professionals who are familiar with handling electrical and electronic modules as well as communication and measurement technology. A person is regarded as professional if he/she is capable of assessing safety and recognizing possible consequences and risks on the basis of his/her specialist training, knowledge and experience and knowledge of the standard regulations.

1.2 Notations

In this manual, the following notations are used:

Action	Notation	
Menu command	Menu <i>Logic diagram</i>	
Calling the menu command	Step 1 – Step 2 – Step 3 – Step x	
	Example: Select the menu <i>Logic diagram – Add – New function block</i> .	
Keys	<key name=""></key>	
	Example: <alt>; <f1></f1></alt>	
Press the keys simultaneously	<key name=""> + <key name=""></key></key>	
	Example: <alt> + <ctrl></ctrl></alt>	
Buttons	<key name=""></key>	
	Example: <ok>; <cancel></cancel></ok>	
Filenames, paths	Filename, Path	
	Example: Test.docx	

1.3 Used symbols

If safety instructions or other notes are used in this manual, they mean:

Danger!

The non-observance of this safety information may result in an imminent risk of death or severe injury:

■ Observe the specified measures.

Warning!

The non-observance of this safety information may result in a potential risk of death or severe injury!

Observe the specified measures.

Caution!

The non-observance of this safety information may result in a potential risk of injury or material damage!

Observe the specified measures

Note

A note specifies special requirements or actions to be observed.

Tip

Tip or example as a helpful note or insider tip to make the work a little bit easier.

Other documentation

Reference to additional documentation or further reading.

ibaPQU-S About ibaPQU-S

2 About ibaPQU-S

ibaPQU-S is a modular system to measure power quality parameters using *ibaPQU-S* as central unit.

ibaPQU-S measures raw values such as current and voltage in sync with the grid and calculates the characteristic values according to IEC 61000-4-30 Ed. 3 Class A. Characteristic values include:

- Frequency
- RMS and maximum value, rectified value, form factor, crest factor
- FFT (harmonics, interharmonics up to 50th order)
- THD (Total Harmonic Distorsion)
- Phase values (U/I phase angle to the reference voltage)
- Power values (active power, apparent power, reactive power, $\cos \theta$, electric energy, power factor for individual lines and for the total grid)
- Symmetrical components (positive, negative and zero sequence component) and current unbalance
- Flicker (according to IEC 61000-4-15, short-term, long-term)
- Event detection (voltage dip, voltage swell, voltage interruption, rapid voltage changes, mains signalling event)

In addition, *ibaPQU-S* calculates the following values:

- Commutation notches
- Flicker for currents
- Symmetrical components (positive, negative and zero sequence component) and current unbalance

ibaPQU-S is suitable for the following grids:

- DC
- 50 Hz
- 60 Hz
- User-defined networks with a frequency between 10 and 80 Hz

2.1 Modular concept

The modular concept of the *ibaPQU-S* system is designed on the basis of a backplane. You can plug on this backplane not only the CPU, but also up to 4 input/output modules. *ibaPQU-S* is used as a central unit with integrated measurement and calculation algorithms and additionally features 8 digital inputs. The central unit can be expanded by up to 4 current and voltage measurement modules.

The following I/O modules support the measurement and calculation of power quality parameters:

ibaPQU-S About ibaPQU-S

Voltage measurement modules

- *ibaMS4xAI-380VAC* (4 analog inputs for 380 V AC)
- ibaMS8xAI-110VAC (8 analog inputs for 110 V AC)
- *ibaMS16xAI-24V* (16 analog inputs for ±24 V)
- ibaMS16xAI-24V-HI (16 analog inputs for ±24 V, high impedance)
- ibaMS16xAI-10V (16 analog inputs for ±10 V)
- *ibaMS16xAI-10V-HI* (16 analog inputs for ±10 V, high impedance)

Current measurement modules

- ibaMS3xAI-1/100A (3 analog inputs for 1 A AC/100 A DC)
- *ibaMS3xAI-5A* (3 analog inputs for 5 A AC)
- *ibaMS3xAI-1A* (3 analog inputs for 1 A AC)
- ibaMS16xAI-20mA (16 analog inputs for ±20 mA)

Combination module

■ *ibaMS4xADIO* (combination module with 4 analog inputs/outputs and 4 digital inputs/outputs each; the 4 analog inputs are supported for the *ibaPQU-S* function, voltage or current measurement configurable)

All other I/O modules of the iba modular system are also supported, however, the signals are only transmitted as raw values.

The raw signals and internally calculated characteristic values are sent to the *ibaPDA* data acquisition system via a bidirectional fiber optic connection for visualization and recording. Signal configuration and characteristic value selection are performed in *ibaPDA*. Additionally, *ibaPDA* allows advanced calculations, configuring event-based measurements based on triggers or displaying faults using an alarm function.

2.2 Measurements according to EN50160

The DIN EN 50160 standard specifies the voltage quality in public supply grids. It defines features and characteristic values for the supply voltage quality and limit values. The optional "EN50160" mode in *ibaPDA* captures all characteristic voltage values defined in the standard. Beyond the requirements of DIN EN 50160, currents can optionally be configured for evaluation.

The *ibaAnalyzer* software is used for measurement evaluation and generation of reports. Moreover, it is possible to create long-term trending and clearly structured reports that can be used e.g. to prove compliance with the DIN EN 50160 standard.

Issue 1.7 12 iba

ibaPQU-S Scope of delivery

3 Scope of delivery

After unpacking, check that the delivery is complete and undamaged.

The scope of delivery includes:

- Device *ibaPQU-S*
- Covering caps for FO cables, USB and Ethernet
- 16-pin connector with spring terminals (digital input channels)
- 2-pin terminal block with spring terminals (power supply)
- Data medium "iba Software & Manuals"

4 Safety instructions

Observe the following safety instructions for ibaPQU-S.

4.1 Intended use

The device is an electrical equipment. It is only allowed to use the device for the following applications:

- measurement data acquisition of voltage and current signals in energy grids
- applications with *ibaPDA*

The device may only be used as defined in the technical data, see chapter **7** Technical data, page 93.

The current and voltage range is specified by the I/O modules used.

4.2 Special safety instructions

In addition to the following safety instructions, please also observe the safety measures for the I/O modules used.

Warning!

This is a class A device. This equipment may cause radio interference in residential areas. In this case, the operator will be required to take appropriate measures.

Caution!

Observe the operating voltage range

The device may not be operated at voltages exceeding +24 V DC ($\pm 10\%$). An overly high operating voltage destroys the device!

Caution!

Modules must NOT be attached or detached to/from the rack under voltage.

Switch off the central unit or disconnect power supply before attaching or detaching the modules.

Caution

Make sure that the cooling fins have sufficient ventilation!

Caution!

Before working on or dismounting the device, disconnect it from the power supply.

Note

Do not open the device! Opening the device will void the warranty!

Note

To clean the device, use a dry or slightly moistened cloth.

15

5 System requirements

Hardware

For operation

- Power supply 24 V DC ± 10%, 3 A (fully equipped)
- Module rack, e. g. ibaPADU-B4S,, see **7** Accessories and related products, page 102)

For parametrization of the device and for measuring

- PC with the following minimum equipment:
 - one free PCI slot, or
 - one free PCI Express slot, or
 - one ExpressCard (54/34) slot (notebook)

On the iba homepage http://www.iba-ag.com you will find suitable computer systems with desktop and industrial housing.

- One FO input card type *ibaFOB-D* (firmware version beginning with D4):
 - ibaFOB-io-D / ibaFOB-io-Dexp
 - ibaFOB-2io-D / ibaFOB-2io-Dexp
 - ibaFOB-2i-D / ibaFOB-2i-Dexp with ibaFOB-4o-D add-on module
 - *ibaFOB-4i-D / ibaFOB-4i-Dexp* with *ibaFOB-4o-D* add-on module
 - ibaFOB-io-ExpressCard (for notebooks)
- FO cable (bidirectional)

Software

■ *ibaPDA* beginning with version 6.34.4

ibaPQU-S

- Firmware beginning with version 02.11.016
- Hardware beginning with version A8

6 Mounting, connecting, dismounting

Caution!

Before working on or dismounting the device, disconnect it from the power supply.

6.1 Mounting

Proceed as follows to mount ibaPQU-S on a module rack.

- 1. Mount the backplane panel on an appropriate construction.
- 2. Connect the grounding.
- 3. Plug the device into the left slot.

Make sure that the guide bolts on the rear side of the device are inserted into the corresponding holes on the backplane.

- 4. Press the device firmly against the backplane and secure it with the fixing screws.
- 5. Remove the covers of the backplane slots in which you want to plug I/O modules.
- 6. Install one or more I/O modules to the right of the central unit (slots X2 through X5, freely selectable).
- 7. Attach the module to the backplane bus and press it firmly against the module rack.
- 8. Screw the module to the top and bottom of the module rack using the fastening screws.

Note

Always screw tight the device and the modules. Plugging or unplugging the connectors for the inputs/outputs can otherwise cause damage.

6.2 Connecting

Proceed as follows to connect the ibaPQU-S device.

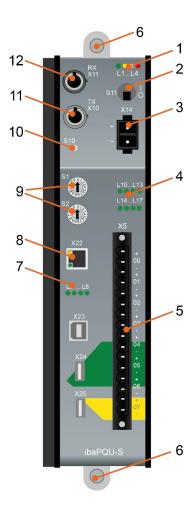
- 1. Connect the measuring lines connected to the measuring objects to the I/O module inputs. For information on the connection principles, see **7** Measuring principles and parameters, page 26.
- 2. Connect the device to the *ibaPDA* computer via a *ibaNet* fiber optic patch cable (duplex):
 - the RX input (X11) of the device with the TX interface of the ibaFOB-D card in the ibaPDA-PC
 - the TX output (X10) of the device with the RX interface of the ibaFOB-D card in the ibaPDA-PC
- 3. If all required cables are connected, connect the central unit to the power supply.
- 4. Switch on the central unit.

6.3 Dismounting

Proceed as follows to dismount ibaPQU-S from the module rack.

- 1. Switch off the device.
- 2. Remove all cables.
- 3. Hold the device and remove the upper and lower fixing screw.
- 4. Pull the device or the I/O modules off the module rack.

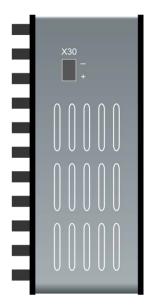
18


7 Device description

Here you will find views and descriptions of the device ibaPQU-S.

7.1 Device views

Here you will find the views and descriptions of the *ibaPQU-S* device.


Front view

- 1 Operating status indicator L1...L4
- 2 ON/OFF switch S11
- 3 Connection power supply 24 V X14
- 4 Indicators digital inputs L10...L17
- 5 Connection for digital inputs X5
- 6 Fixing screws
- 7 Indicators L5...L8

- 8 Network interface X22 (no function)
- 9 Rotary switches S1, S2
- 10 System function push button S10 (no function)
- 11 Connection FO output (TX) X10
- 12 Connection FO input (RX) X11X23 for service purposes onlyX24, X25 USB host interfaces for future functions

Bottom view

X30 buffer voltage connection 6 V...60 V DC

7.2 Indicating elements

Below you will find information on the indicating elements of the device *ibaPQU-S*.

7.2.1 Operating status L1...L4

Colored LEDs on the device indicate the operating status of the device.

LED	Status	Description	
L1 off		out of operation, no power supply	
Green		hardware error	
	flashing (0.5 Hz /	ready for operation	
	2 s)	deviations in the flashing period point out overload or booting of the device. Booting can take up to 100 s.	
	flashing (fast)	system programming mode	
	(approx. 10 Hz / 0.1 s)	firmware update active	
	on	controller overloaded	
L2	off	no calculation	
Yellow	flashing	calculation running	
L3	off	no FO signal detected	
White	flashing	FO signal detected, configuration error, the received ibaNet protocol does not match the internally configured protocol	
	on	FO signal detected	
L4	off	no error	
Red	flashing	error, internal applications do not run	
	on	hardware error	

Note

If an error is displayed on LED L4, contact iba support.

7.2.2 LEDs L5...L8

LEDs L5 to L8 show the status and progress of the installation of an update, see **7** Updates, page 32.

7.2.3 Indicators digital inputs L10...L17

The green LEDs indicate whether a digital input is active or not.

LED	Status	Description
L10L17	on	signal ok, logical 1
	off	no signal, logical 0

For further information, see **7** Digital inputs X5, page 23.

7.3 Operating elements

Below you will find information on the operating elements of the *ibaPQU-S* device.

7.3.1 On/Off switch S11

By switching the device off and on again, the power voltage is disconnected and reconnected and the device is rebooted.

Position	Status	Description
I	on	device switched on
0	off	device switched off

7.3.2 Rotary switches S1 and S2

The rotary switch S1 is used to set the device address. Two devices can be connected to a ring using the 32Mbit Flex protocol.

Device number in the ring structure	Position of rotary switch S1
Not allowed	0
1 st device	1
2 st device	2

S2 is not used (should be zero).

iba

Note

Unlike other iba devices supporting the 32Mbit Flex protocol, it is only allowed to operate two *ibaPQU-S* systems in cascade configuration at one free 32Mbit Flex link of an *ibaFOB* card due to the high sampling rate of 10 - 40 kHz and the high data volume in the network channel of the Flex protocol.

Note

When starting up the device for the first time, check the status signals of *ibaPQU-S* (data loss etc.). If multiple signals occur, the time base of the system has to be extended.

7.4 Communication interfaces

Below you will find information on the communication interfaces of the *ibaPQU-S* device.

7.4.1 Fiber optic connections X10 and X11

The FO cables transmit the process data between the device and the connected iba systems. The 32Mbit Flex transfer protocol also allows configuration data to be transferred via FO cable.

Connection	Description
X10 output (TX)	FO transmitting interface
X11 input (RX)	FO receiving interface

Maximum distance of fiber optic connections

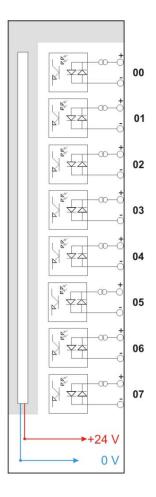
The maximum distance of fiber optic connections between 2 devices depends on various influencing factors. This includes, for example, the specification of the fiber (e.g. $50/125 \, \mu m$, $62.5/125 \, \mu m$, etc.), or the attenuation of other components in the fiber optic cable plant such as couplers or patch panels.

However, the maximum distance can be estimated on the basis of the output power of the transmitting interface (TX) or the sensitivity of the receiving interface (RX). A model calculation can be found in chapter **7** Example for FO budget calculation, page 100.

The specification of the transmission power and the reception sensitivity of the FO components installed in the device can be found in the technical data under **7** *ibaNet*, page 94.

22

7.4.2 Network connection X22


Ethernet interface 10/100 Mbit/s, no function.

7.5 Digital inputs X5

7.5.1 Connection diagram/pin assignment

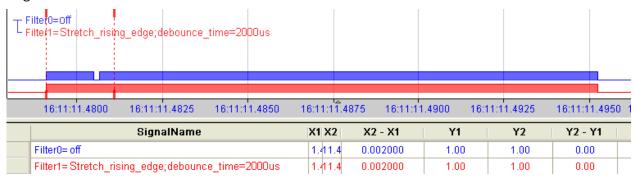
Here, you can connect 8 input signals (0...7), each bipolar and electrically isolated. Each channel is connected by means of two-wire connection. Due to the reverse polarity protection, the measurement signal is indicated logically correct, even if the connection is polarity-reversed.

See 7 Technical data, page 93

7.5.2 Debounce filter inputs

Four debounce filters are available for each of the digital inputs. These can be chosen and configured for each signal independently with the I/O Manager of *ibaPDA*. The following filters can be selected:

- Off (no filter)
- Stretch rising edge
- Stretch falling edge
- Stretch both edges
- Delay both edges


For each filter, a debounce time has to be defined in μ s. This debounce time can have a value between [1 μ s ... 65,535 μ s].

Off

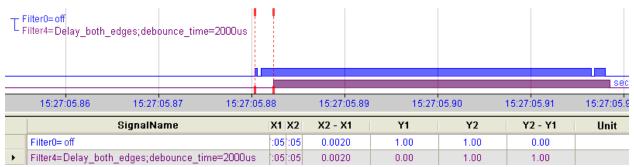
The measured input signal is forwarded directly without filtering.

Stretch rising edge

The first rising edge sets the output signal (red) to logical 1 and it remains logical 1 for the set debounce time. Subsequently, the channel is transparent again and waits for the next rising edge.

Stretch falling edge

The first falling edge sets the output signal (green) to logical 0 and it remains logical 0 for the set debounce time. Subsequently, the channel is transparent again and waits for the next falling edge.


Stretch both edges

With the first edge, the output signal (ochre) follows the initial signal (blue) and keeps the logical level for the duration of the defined debounce time. Subsequently, the channel is transparent again and waits for the next (rising or falling) edge.

Delay both edges

Beginning with the first edge, the output signal (purple) blocks the input and keeps the logical value of the edge for the duration of the defined debounce time. After the debounce time has elapsed, the channel is transparent again, directly assumes the logical level of the input signal and waits for the next (rising or falling) edge.

7.6 Voltage supply

7.6.1 Voltage supply X14

The external voltage supply is connected with a 2-pin connector.

Caution!

Only connect the device to an external voltage supply 24 V DC (±10 % unregulated)!

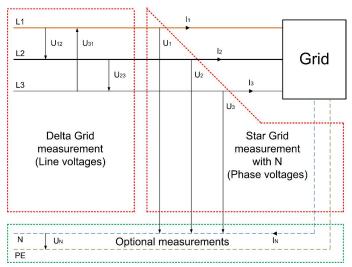
Pay attention to correct polarity!

7.6.2 Buffer voltage X30

The connection of a buffer voltage is supported at the X30 connector (bottom side). The following device functions can be buffered when disconnected from power supply:

■ FO line:

Incoming FO telegrams are transmitted, the FO line is not interrupted.


For this purpose, a buffer voltage of typ. 12 V DC (9 V ...15 V) is applied at the X30 connector. In case of buffering, the current consumption is approx. 70 mA at 12 V.

8 Measuring principles and parameters

To determine the power quality parameters, *ibaPQU-S* measures raw values such as currents and voltages in synch with the grid. The characteristic values relevant for power quality are calculated internally.

8.1 Grid types

The device is suitable for 1-phase grids, 3-phase grids without neutral conductor and 3-phase grids with neutral conductor (N) or protective earth (PE).

1-phase grid

In the 1-phase grid, the voltage U_1 and the current I_1 are measured.

3-phase grid without N/PE

The phase-to-phase voltages U_{12} , U_{23} , U_{31} and the phase currents I_1 , I_2 and I_3 are measured in this grid (see figure above).

3-phase grid with N/PE

The phase-to-phase voltages U_1 , U_2 , U_3 and the phase currents I_1 , I_2 and I_3 are measured in this grid. Optionally, U_N and I_N can be measured (see figure above).

8.2 Signals and calculated characteristic values

The following table shows the required measured values depending on the grid type. Based on the measurements, all characteristic values are calculated which are needed to assess the power quality.

Measured values

1-phase	3-phase without N/PE	3-phase with N/PE
U ₁	U ₁₂ , U ₂₃ , U ₃₁	U ₁ , U ₂ , U ₃

Calculated characteristic values

Characteristic values	Calculation time					available for			Grid type (conductor)			Calculation interval		
	Half period	10/ 12	150/ 180	10 s	10 min	2 h	U	I	U*I	1	3	3+N	Phase	Grid
RMS value ¹	X	Х	Χ	Х	X	Х	Х	Х	-	Х	Х	Х	X	-
Peak value ¹	X	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	-
Rectified value ¹	Х	X	X	Х	X	X	Х	Х	-	Х	Х	Х	X	-
Form factor ¹	-	Χ	Χ	Х	Χ	Х	Х	Х	-	Х	Х	Х	Х	-
Crest factor ¹	-	Х	Χ	Х	Х	Х	Х	Х	-	Х	Х	Х	Χ	-
Frequency ²	X	Χ	Χ	Х	X	Х	Х	Х	-	Х	Х	Х	Χ	Χ
Phase angle ⁶	-	Χ	Χ	Х	X	Х	Х	Х	-	Х	Х	Χ	Χ	-
Harmonics ¹	-	Χ	Χ	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	-
Interharmon- ics ¹	-	X	X	X	X	Х	Х	Х	X	Х	Х	X	X	-
THD ³	-	Χ	Χ	Х	Χ	Х	Х	Х	Х	Х	Х	Χ	Χ	-
TIF ¹	-	Х	Χ	Х	X	Х	Х	Х	-	Х	Х	X	Χ	-
Mains signal- ling voltage ¹	-	X	X	X	X	Х	Х	-	-	Х	Х	X	X	-
Power ¹	-	Х	Χ	Х	Х	Х	-	-	Х	Х	Х	Х	Х	Х
Energy ⁴	-	Х	Χ	Х	Х	Х	-	-	Х	Х	Х	Х	Х	Х
Apparent power ¹	-	Х	X	Х	Х	Х	-	-	Х	Х	Х	Х	X	X
Apparent en- ergy ⁴	-	Х	Х	Х	Х	Х	-	-	Х	Х	Х	Х	Х	Х
Reactive pow- er ¹	-	Х	Х	Х	Х	Х	-	-	Х	Х	Х	Х	Х	Х
Reactive en- ergy ⁴	-	Х	Х	Х	Х	Х	-	-	Х	Х	Х	Х	Х	Х
Reactive pow- er with sign ¹	-	Х	Х	Х	X	Х	-	-	Х	Х	Х	Х	Х	Х
Reactive pow- er with sign ⁴	-	Х	Х	Х	Х	Х	-	-	Х	Х	Х	Х	Х	Х

Explanation: X = available, - = not available

¹ Quadratic average of 10/12 period values

² Direct calculation from raw values for all above-listed calculation times

³ Calculation from the harmonics of the listed calculation time

⁴ Aggregation based on calculation time

⁵ No aggregation

⁶ Phase of the 10/12 FFT sum vector

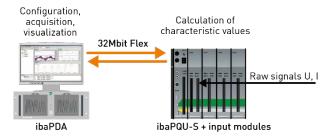
Characteristic values	Calculation time				available for			Grid type (conductor)			Calcula interva			
	Half	10/	150/	10s	10	2	U	I	U*I	1	3	3+N	Phase	Grid
	peri- od	12	180		min	2 h								
Reactive ener- gy with sign ⁴	-	X	Х	Х	Х	Х	-	-	Х	Х	Х	Х	X	X
Power factor ¹	-	Х	Х	X	X	Х	-	-	Х	Х	Χ	Х	X	Χ
Cos φ¹	-	Х	Х	Х	Х	Х	-	-	Х	Х	Х	Х	Х	-
Positive sequence component ¹	-	X	Х	Х	X	Х	Х	X	-	-	-	X	-	X
Negative sequence component ¹	-	X	X	X	X	X	X	Х	-	-	-	X	-	X
Zero se- quence com- ponent ¹	-	X	X	X	X	X	X	Х	-	-	-	X	-	X
Supply voltage unbalance (negative sequence component) ¹	-	X	X	X	X	X	X	-	-	-	X	Х	-	X
Supply voltage unbalance (zero sequence component) ¹	-	X	Х	Х	X	X	Х	-	-	-	-	Х	-	X
Flicker P_inst ⁵	Χ	-	-	-	-	-	Х	Х	-	Х	Х	Х	Х	-
Flicker P_st ⁵	-	-	-	-	Х	-	Х	Х	-	Х	Х	Х	Х	-
Flicker P_lt ⁵	-	-	-	-	-	Х	Х	Х	-	Х	Х	Χ	Х	-
Events ⁵	-	Х	-	-	-	-	Х	-	-	Х	Х	Χ	-	Χ
Commutation notches ⁵	Х	-	-	-	-	-	Х	-	-	Х	Х	X	Х	-

Explanation: X = available, - = not available

¹ Quadratic average of 10/12 period values

² Direct calculation from raw values for all above-listed calculation times

³ Calculation from the harmonics of the listed calculation time


⁴ Aggregation based on calculation time

⁵ No aggregation

⁶ Phase of the 10/12 FFT sum vector

iba

8.3 System integration

- Acquisition of the raw values of voltage and current at the input modules
- Calculation of the characteristic values in ibaPQU-S
- Configuration of the modules, configuration of data recording, acquisition and visualization of the measured and calculated characteristic values in *ibaPDA*
- Transferring the configuration and data with 32Mbit Flex
- Analysis, evaluation and if applicable reporting in ibaAnalyzer

8.4 Time synchronization

The ibaPDA computer synchronizes ibaPQU-S with the ibaPDA computer time.

For comparable measurement results which are according to standards, the *ibaPDA* computer has to be synchronized.

Other documentation

For more information, see the ibaPDA manual.

8.5 Signal processing

The signals have to be processed in the modules for the standard-compliant calculation of the characteristic values. This chapter describes the associated effects.

8.5.1 Sampling rate

To calculate the power quality parameters, the *ibaPQU-S* central unit samples the input signals synchronously with the grid and calculates the characteristic values on this basis. For this purpose, a synchronization signal (reference signal in *ibaPDA*) is used and multiplied to a sampling rate between 30 kHz and 40 kHz. For the nominal frequencies of 50 Hz and 60 Hz, a sampling rate of 30.72 kHz is set by default and corrected according to the synchronization signal.

ibaPDA acquires the raw signals on a synchronized time base. Therefore, the signals are re-sampled internally by *ibaPQU-S* using the sampling rate set in *ibaPDA*. As a result, individual values may not be available or repeated.

ibaPDA sampling rate	ibaPQU sampling rate	Visible signal distortion					
1 ms = 1 kHz	30.72 kHz	None					
0.1 ms = 10 kHz	30.72 kHz	Slightly varying slope of the sinus signal					
0.05 ms = 20 kHz	30.72 kHz	Varying slope of the sinus signal					
0.025 ms = 40 kHz	30.72 kHz	Values are repeatedly duplicated					

8.5.2 Signal filtering

To calculate the characteristic values, DIN EN 61000-4-7 dictates an anti-aliasing filter to suppress high-frequency interference that would corrupt the calculation of the harmonic components. A digital anti-aliasing filter with a cut-off frequency of approx. 3 kHz is implemented. This filter is also used for the raw values recorded with *ibaPDA*.

ibaPQU-S activates this anti-aliasing filter with the signals used for characteristic value calculation or as synchronization signal. The configuration of these signals in *ibaPDA* is ignored in this process.

Signals not used for characteristic value calculation are not changed and the settings in *ibaPDA* are active.

The following table shows the filter effect:

Signal used for characteristic value calculation	Inputs	Filter (cut-off frequency fc)	Delay Total		
yes	Analog U / I	Analog filter with fc=12 25 kHz and digital filter with fc=3 kHz	approx. 0.3 ms		
no	Analog	None*	0		
		Analog filter with fc=1225 kHz*	0.04 to 0.08 ms		
		Analog filter with fc=1225 kHz and digital filter with adjustable fc*	Depends on fc		
no	Digital	None or debouncing in mode "stretch rising/falling edge" or "stretch both edges"*	0		
		Debouncing in mode "delay both edges"*	Set debounce time in µs		

^{*} Setting in ibaPDA

Note

A lot of analog modules allow setting the digital anti-aliasing filter in *ibaPDA*. The filter is not available in connection with *ibaPQU-S*.

iba

8.5.3 Automatic range switching

The *ibaMS3xAI-1A/100A* module has 2 measuring ranges: $1 A_{\text{nominal}}$ (equivalent to 6.25 A_{peak}) and $100 A_{\text{peak}}$. *ibaPQU-S* uses both ranges to calculate the characteristic values in this module:

- When the current values range between -6.24 and +6.24 A, the 1 A_{nominal} range is used.
- Once a measurement is outside the range, the 100 A range is activated. The 1 A_{nominal} range is only reactivated if no measurement has been outside the range ± 6.24 A for a period of one second and either zero crossing occurs or another 200 ms have passed. These times are valid for 50 Hz or 60 Hz and have to be increased accordingly at lower frequencies (e.g. 25 Hz means twice the time).

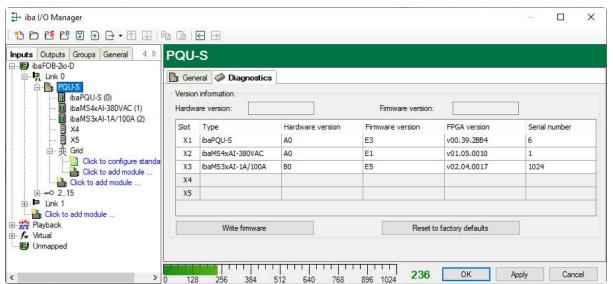
In this context, the range of the set signal (in the network definition) is irrelevant; the algorithm described above will always be used.

For signals captured as raw signals, the range settings in *ibaPDA* take effect.

ibaPQU-S Updates

9 Updates

Caution!


Do not switch off the device when an update is running. This might damage the device. Installing an update can take some minutes.

A firmware update always upgrades the entire iba modular system, i. e. the central unit and the plugged-in I/O modules. When the update is completed, the device reboots automatically.

9.1 Update via ibaPDA

Proceed as follows to update the ibaPQU-S device via ibaPDA.

- 1. Open the ibaPDA I/O Manager and select the PQU-S module in the tree structure.
- 2. Click the <Write firmware> button on the *Diagnostics* tab and select the pqu v[xx.yy.zzz].iba update file.
- 3. Start the update with <OK>.

- → After the update, *ibaPQU-S* reboots automatically. This can take up to 5 minutes.
- \rightarrow As soon as the green LED L1 is flashing regularly and none of the LEDs L5 ... L8 is on, the device can be used again.

ibaPQU-S Updates

9.2 Update of the modules

After having mounted the modules and applied the voltage to the central unit, *ibaPQU-S* detects the modules and checks the firmware version.

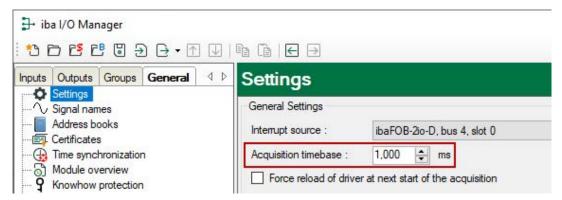
ibaPQU-S has a so-called "overall release version". This version contains the current software version of the central unit as well as the firmware versions of the modules.

When the firmware version of a module does not match the "overall release version" of the central unit, *ibaPQU-S* does an automatic up or downgrade of the module. After that the module is ready for use.

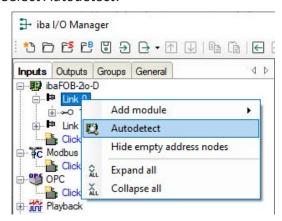
Note

The "overall release version" contains all modules known until then and the corresponding firmware versions. If a module is not yet known (i.e. it is more recent than the central unit's firmware version), this module is ignored and not displayed in *ibaPDA*.

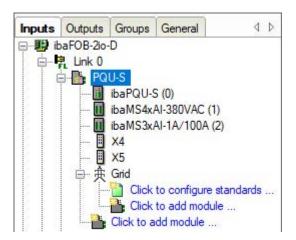
In this case, a new update file has to be installed for the "overall release version". If you want to get the current update file, please contact the iba support.

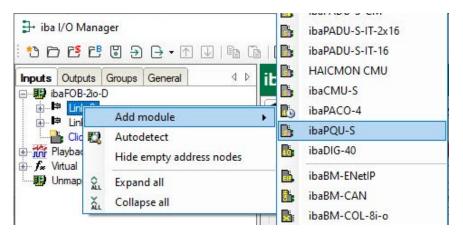

33

10 Configuration with ibaPDA


10.1 First steps

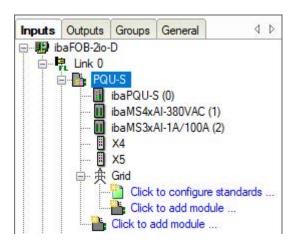
Start ibaPDA, open the I/O Manager and proceed as follows:


1. Select the *General* tab and the *Settings* node and set the acquisition timebase on the left to 1 ms.


- 2. In the I/O Manager under *Inputs*, look for the corresponding link of the *ibaFOB-D* card to which *ibaPQU-S* is connected. Right-click the link.
- → A submenu opens.
- 3. Select Autodetect.

→ If *ibaPDA* detects the device automatically, the device and the connected modules are listed in the module tree.

- 4. To configure the *ibaPQU-S* system manually, proceed as follows:
- 5. Click with the right mouse button on the connection (Link) of the *ibaFOB-io-D* card, the device is connected to.
- 6. Select Add module.
- → The list of available modules is displayed.

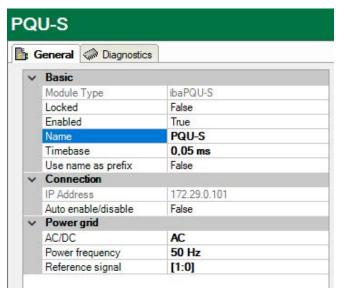


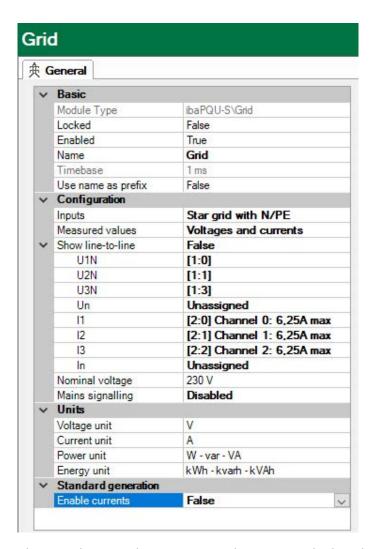
- 7. Select ibaPQU-S.
- → Now, the device is shown in the module tree.
- 8. Drag the device to the address that is set on the device with the S1 rotary switch (Link 1-15 under the device), while keeping the right mouse button pressed:
 - Position 1 F corresponds to address 1 15.
- 9. Click "Read configuration from device" on the General tab.

→ The connected modules are detected automatically and displayed in the module tree.

iba

- 10. The current and voltage inputs required for the measurement are configured in the input modules (see *Measuring principles and parameters*, page 26).
- 11. Moreover, you can configure additional input signals to be acquired as raw signals.


Note

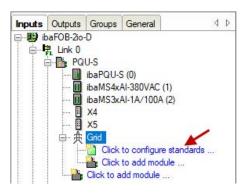

The description of the input modules and their configuration can be found in the module documentation.

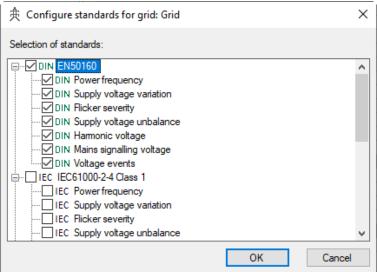
12. In the *PQU-S* basic module, you set the power frequency of your grid and specify a reference signal.

One of the connected phases by which sampling is synchronized is used as the reference signal.

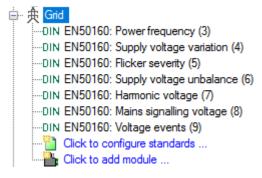
13. *ibaPDA* provides special modules to measure or calculate the power quality characteristic values. In the *Grid* module you can make general settings, define the grid type (1-phase or 3-phase grid) and assign signals to the inputs that provide the corresponding signals. Depending on the grid in which the measurements are taken, different voltage and current signals are required (see *Measuring principles and parameters*, page 26).

The signals *Un* and *In* are optional input signals that do not have to be assigned.

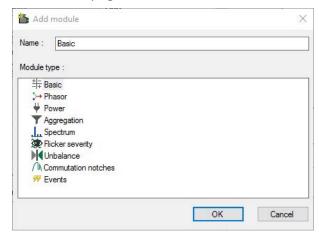

The option *Show line-to-line* allows the voltages U12, U23 and U31 to be provided also in a star system.


If the signals are not assigned, *ibaPQU-S* calculates these values. If the signals are measured, the raw values serve as the basis for the other calculations.

14. Under *Measured values* select whether voltages only, currents only or voltages and currents are measured.


15. To perform measurements according to a defined standard, click the link *Click to configure standards...* and select the desired standard.

By selecting the standard, all characteristic values required for measurement and calculation according to the standard are determined automatically. The selection causes the corresponding submodules comprising the different power quality characteristic values to be added to the *Grid* module.


16. If the standard *EN50160* is selected, 7 submodules are displayed which determine all characteristic values required according to DIN EN 50160 (power frequency, supply voltage variation, flicker severity, supply voltage unbalance, harmonic voltage, mains signalling voltage, voltage events).

17. Each submodule has its own time base; the default value should not be changed. The signal names in the submodules are already preset. They include the corresponding characteristic value, the measuring input and the measurement interval allowing it to be identified unambiguously in subsequent evaluations.

Information on the configuration of the submodules can be found in chapter **7** EN50160 submodule: Power frequency, page 58. Below you will find a summary of the key properties and the determined characteristic values of the submodules according to EN50160. (see also chapter **7** Overview of the modules in ibaPDA, page 41).

- EN50160: Power frequency power frequency, interval 10 s
- EN50160: Supply voltage variation RMS value voltage, interval 10 min
- EN50160: Flicker severity long-term flicker (P₁) per phase, interval 2 h
- EN50160: Supply voltage unbalance negative sequence unbalance, interval 10 min
- EN50160: Harmonic voltage, for each voltage input, interval 10 min
 - fundamental frequency, 10 min
 - THD up to 40th harmonic
 - relative harmonic 1 50
- EN50160: Mains signalling voltage for each voltage input, interval 3 s
 - fundamental frequency
 - relative harmonic DC
 - relative harmonic 1 50
 - relative interharmonic 1 50
- EN50160: Voltage events, interval half period
 RMS value voltage, half period
- 18. To calculate other parameters, click the *Click to add module*... link to add submodules (Basic, Phasor, Power, Aggregation, Spectrum, Flicker severity, Unbalance, Commutation notches, Events). A detailed description of the submodules can be found from chapter *▶ Basic submodule*, page 69.

- Basic, values for each input:
 - RMS value, peak value, rectified value, frequency (measurement interval 200 ms and half period)
 - phase, form factor, crest factor (peak factor) (measurement interval 200 ms)

- Phasor, values for each input:
 - RMS value, phase angle, frequency (measurement interval 200 ms)
 - used for phasor diagram display (current and voltage values of the 3 phases)
- Power:

values per phase:

- active power, apparent power, reactive power, fundamental reactive power
- distort ion power, peak power
- active energy, apparent energy, reactive energy, fundamental reactive energy, distortion energy- power factor, cos phi

Values for the overall grid (3/4 conductor system)

- active power, reactive power, apparent power, distortion power
- active energy, apparent energy, reactive energy, fundamental reactive energy
- distortion energy
- power factor
- Aggregation:

user-configurable module

Spectrum, harmonic values for a selectable input:

measurement adjustable from 200 ms bis 2 h:

- relative or absolute harmonic 1 50
- relative or absolute interharmonic 1 50
- phase of harmonic 1-50
- THD
- Interference factor (TIF, THFF)
- Level of the mains signalling voltage
- Flicker severity, value per phase:

Unbalance (asymmetry):

values for voltages:

- zero sequence unbalance
- negative sequence unbalance
- positive, negative, zero sequence component
- phase angle of the positive sequence component, negative sequence component and zero sequence component

Values for currents:

- positive, negative, zero sequence component
- phase angle of the positive sequence component, negative sequence component and zero sequence component
- Commutation notches:

depth of notch in percent per phase

Events:

Values for each event type:

- start
- duration

Every event has additional signals, such as minimum or maximum value.

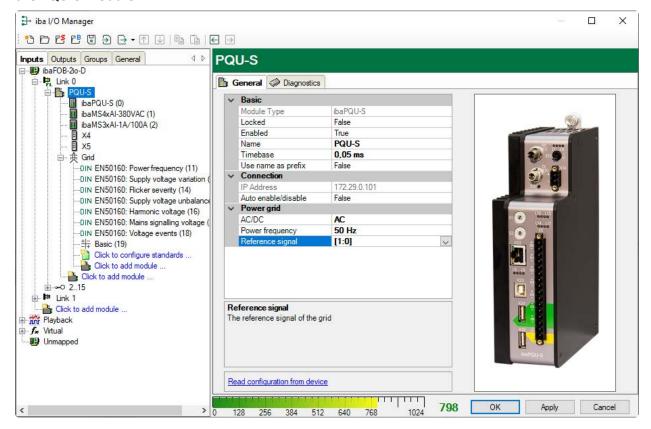
19. Click <Apply> or <OK> to apply the new configuration.

See also **7** Overview of the modules in ibaPDA, page 41.

10.1.1 Overview of the modules in ibaPDA

Modules for EN50160-compliant measurement

Module	Characteristic values	Measuring interval					
		Half period	200 ms	3 s	10 s	10 min	2 h
EN50160: Pow- er frequency	Frequency (reference signal, all voltage inputs)				x		
EN50160: Slow	RMS value					х	
supply voltage variation	(all voltage inputs)						
EN50160: Har- monic voltage	Fundamental frequency, THD up to 40th harmonic,					x	
	relative harmonic 1 – 50						
	(all voltage inputs)						
EN50160: Mains signal-	Fundamental frequency, DC component,			x			
ling voltage	relative harmonic 1 – 50,						
	relative interharmonic 1 – 50						
	(all voltage inputs)						
EN50160: Volt-	RMS value	x					
age events	(all voltage inputs)						
EN50160: Flick- er severity	Long-term flicker calculation per phase						х
EN50160: Sup- ply voltage un- balance	Calculation of the voltage balance for the negative sequence component					Х	


Modules for additional measurements

Module	Characteristic values	Measuring interval					
		Half period	200 ms	3 s	10 s	10 min	2 h
Basic	Frequency (reference signal)	х	Х				
	RMS value, peak value, rectified value, frequency	х	x				
	(all voltage and current inputs)						
	Phase angle, form factor, crest factor (peak factor)		х				
	(all voltage and current inputs)						
Spectrum	Fundamental frequency, THD, DC component, absolute or relative harmonic 1 - 50, absolute or relative interharmonic 1 - 50 (for one voltage or current input)		x	x	x	х	х
Phasor	RMS value, phase angle, frequency (all voltage and current inputs)		x				
Power	Power and energy calculations per phase and for the overall grid		х				
Flicker severity	Flicker calculations per phase in different time intervals	Х				х	х
Asymmetry	Calculation of the symmetrical components		Х				
Aggregation	User configurable	User configurable					
Commutation notches	Commutation notches per phase in percent	х					
Events	Voltage dip/voltage swell		х				
	Voltage drop						
	Rapid voltage changes						
	Mains signalling voltage						

10.2 Basic modules in I/O Manager

10.2.1 PQU-S – General tab

In the *General* tab, you make the basic settings, connection settings and power grid settings for the *PQU-S* module.

Basic settings

Module Type (information only)

Indicates the type of the current module.

Locked

You can lock a module to avoid unintentional or unauthorized changing of the module settings.

Enabled

Enable the module to record signals.

Name

You can enter a name for the module here.

Comment

You can enter a comment or description of the module here. This will be displayed as a tooltip in the signal tree.

Timebase

All signals of the module are sampled on this timebase.

Specifies the acquisition time base in ms used for *ibaPQU-S* and the connected modules in order to sample the raw signals.

Smallest time base: 0.025 ms.

Use module name as prefix

This option puts the module name in front of the signal names.

Connection

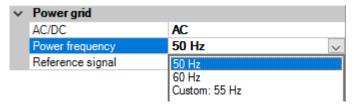
IP address

IP address or host name of the *ibaPQU-S* device (read only).

Auto enable/disable

If the value is TRUE, the data acquisition is started even though the device is missing. The missing device is temporarily disabled in the configuration. During the measurement process, *ibaPDA* tries to re-establish the connection to the missing device. If this is successful, the measurement is restarted automatically including the device that has been missing.

If the value is FALSE, the measurement will not be started, in case *ibaPDA* cannot establish a connection to the device.


Power grid

AC/DC

Select the grid type to be measured from the drop-down menu.

Power frequency

Select the power system frequency from the drop-down menu.

- Default values: 50 Hz, 60 Hz
- For "Custom" you can enter a value between 10 Hz and 80 Hz.

Reference signal

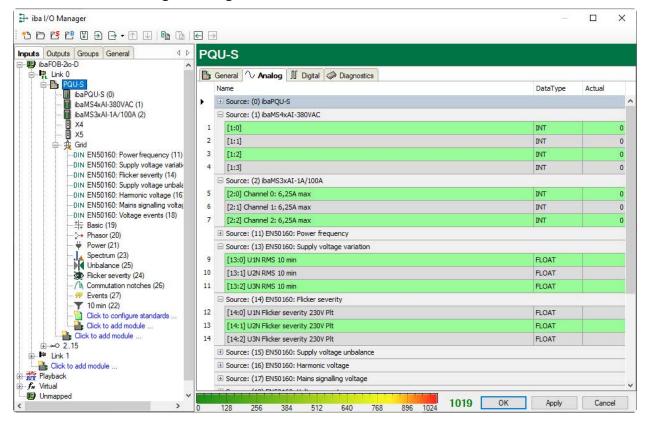
Select one of the connected phases used as reference signal to synchronize the sampling.

Further functions

Read configuration from device

Reads the configuration stored most recently from the device.

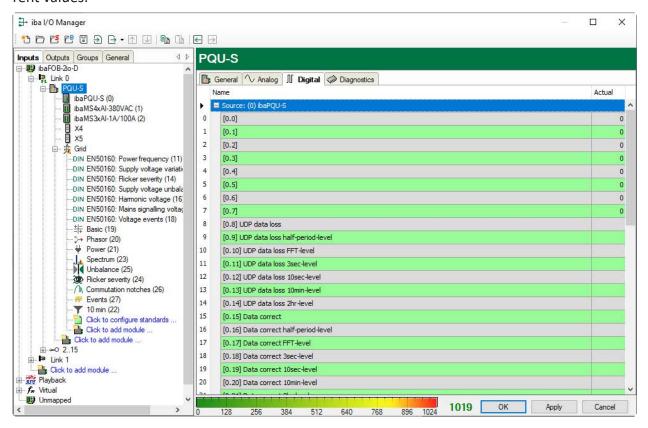
Write configuration to the device


Transfers the current configuration to the device.

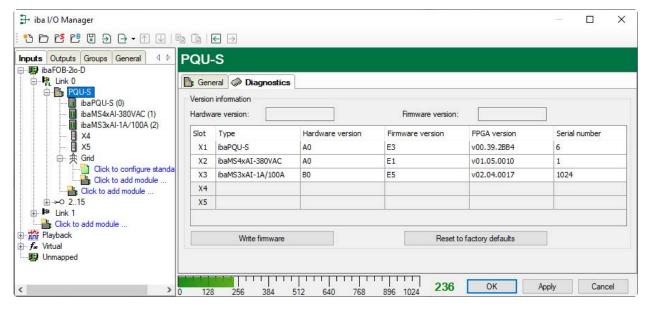
Click <OK> or <Apply> to apply the modified settings.

10.2.2 PQU-S - Analog tab

The Analog tab is only displayed when acquisition with analog input modules has been started.


The list shows the configured analog signals of the input modules and of all configured *Grid* modules and the analog status signals of *ibaPQU-S* with their current values.

10.2.3 PQU-S – Digital tab


The *Digital* tab is only displayed when acquisition with digital input modules has been started.

The list shows the configured digital signals, the digital status display of *ibaPQU-S* and the current values.

10.2.4 PQU-S – Diagnostics tab

In the *Diagnostics* tab you find information about the hardware version, firmware version, FPGA version and the serial number of the central unit and the connected modules.

<Write firmware>

With this button it is possible to perform firmware updates. Select the update file $pqu \ v[xx.yy.zzz]$.iba in the browser and start the update with <OK>.

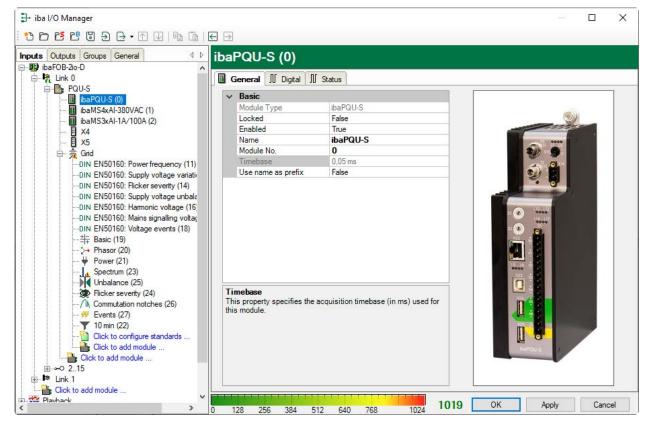
Note

This process may take several minutes and must not be interrupted. After an update the device will be automatically rebooted.

See **7** Update via ibaPDA, page 32.

<Reset to factory defaults>

Using this button all settings are reset to factory defaults after having confirmed the following request with <Yes>.


The following message is displayed and the device reinitializes automatically with the deleted I/O settings:

Subsequently, run the *Autodetect* function again as described in chapter **7** First steps, page 34.

10.2.5 ibaPQU-S – General tab

In the General tab, make the basic settings for the ibaPQU-S module.

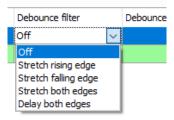
Basic settings

Module Type, Locked, Enabled, Name, Comment, Timebase, Use module name as prefix See **7** PQU-S – General tab, page 43.

Module no.

Reference number for clearly referencing of signals, e.g. in expressions and *ibaAnalyzer*. It is assigned by *ibaPDA* in ascending order but can be changed by the user.

10.2.6 ibaPQU-S – Digital tab



Name

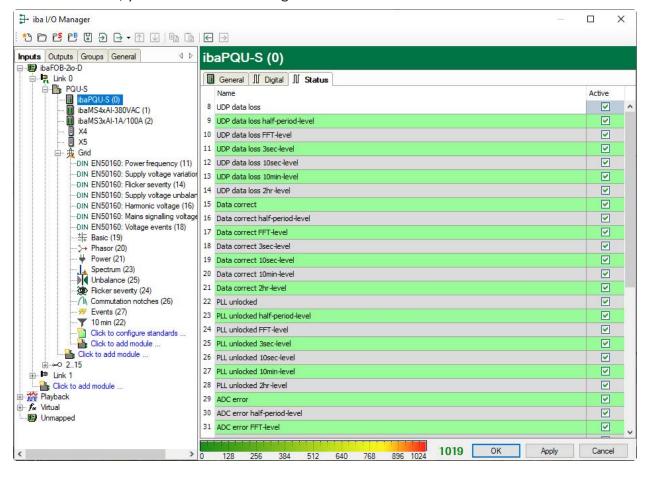
You can enter a signal name and additionally two comments when clicking on the symbol in the *Name* field.

Debounce filter

In the drop-down menu, you can choose the operating mode for the debounce filter. The following settings are available: Off, Stretch rising edge, Stretch falling edge, Stretch both edges, Delay both edges.

See **₹** Debounce filter inputs, page 23.

Debounce time (µs)

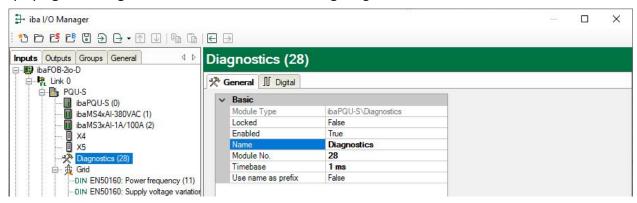

Here, you can define the debounce time in μ s

Active

Enabling/disabling the signal

10.2.7 ibaPQU-S – Status tab

In the Status tab, you can enable status signals.

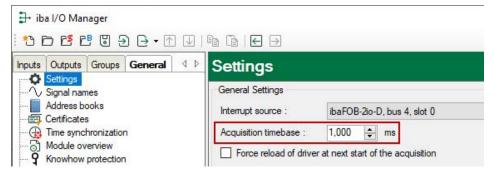


Meaning of the signals:

Signal	Description
UDP data loss []	Data packet lost (per measurement interval)
Data correct []	All data transmitted correctly (for different measurement intervals)
PLL unlocked []	Synchronization with reference signal failed (for different measurement intervals)
ADC error []	Central unit does not receive data from the input module (for different measurement intervals)
Calculation error []	Calculation error (in different measurement intervals)
Calculation period incomplete []	Calculation does not comprise the entire measurement interval (for different measurement intervals)

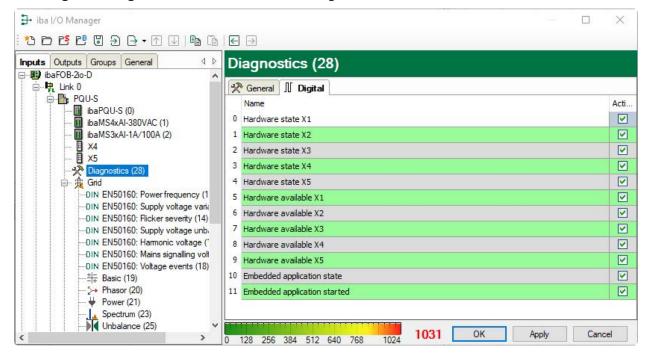
10.2.8 Diagnostics – General tab

In the *Diagnostics* module, diagnosis signals are available. The module has to be added manually by right-clicking the *PQU-S* module and selecting *Diagnostics* from the context menu.



Basic settings

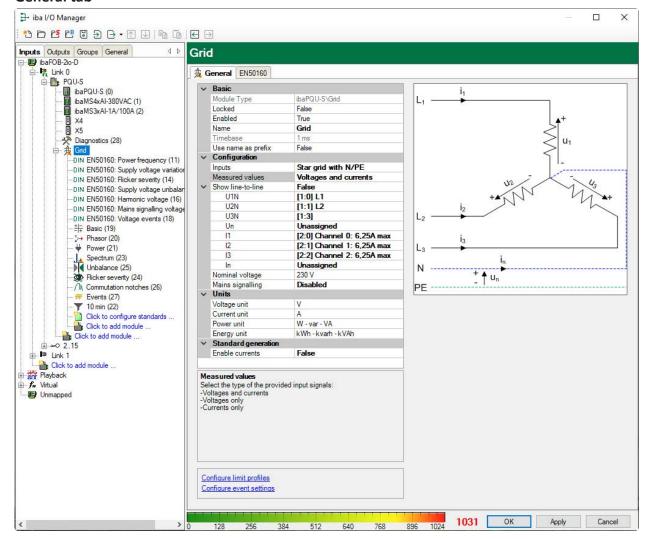
Module Type, Locked, Enabled, Name, Comment, Module No., Use module name as prefix See **7** *PQU-S – General tab*, page 43.


Timebase

The timebase is related to the general acquisition timebase of the *ibaPDA* system. The timebase here cannot be faster than the general acquisition timebase.

10.2.9 Diagnostics – Digital tab

The diagnostics signals can be activated in the *Digital* tab.

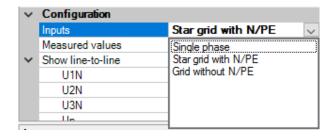


Signal	Description
Hardware state X[]	Module on slot X[] is OK
Hardware available X[]	Module on slot X[] was detected and initialized properly
Embedded application state	Embedded application is currently available
Embedded application started	Embedded application has been started. When the embedded application is finished properly, the signal will change to FALSE.

10.3 Submodules to calculate characteristic values

10.3.1 Grid module

General tab

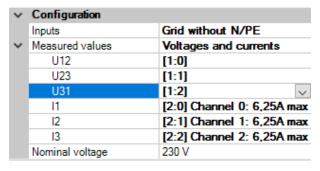

Basic settings

See **₹** PQU-S – General tab, page 43.

Configuration

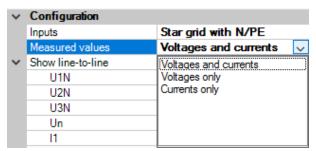
Inputs

Select the grid type.



Depending on the grid type, the input measurement signals required for the grid type are displayed in the rows below.

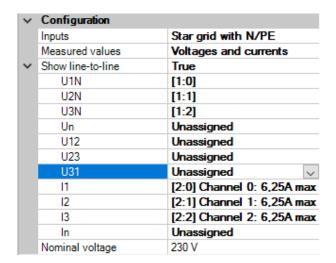
Assign the corresponding input signals to the measurement values.


Example: Grid without N/PE

Required signals: U12, U23, U31, I1, I2, I3

Measured values

Select which raw signals are available.


Based on the selection, the inputs for voltages or currents are displayed or hidden.

Show line-to-line

This option is only available in a star system. It activates the additional inputs for U12, U23 and U31.

Issue 1.7 53

iba

If the additional inputs are not assigned to any signals, the central unit will calculate the signals and use them for the further calculations.

If signals are assigned, they will be the basis for calculations.

Nominal voltage

The nominal voltage for this grid, e.g.: 230 V

Mains signalling voltage

If this option is activated, the carrier frequency of the mains signalling voltage as well as the percentage signal level needs to be set for the grid.

You can find out the carrier frequency at your local energy supplier. The signal level usually lies between 1-2 %.

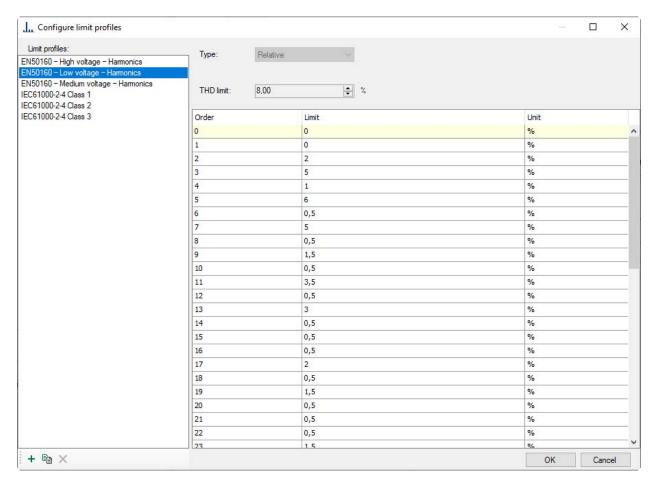
Units

The set units influence the calculated output values.

If large input signals are combined in a calculation, e.g. kV and kA, the output values can be set to a comprehensible dimension.

Standard generation

Enable currents

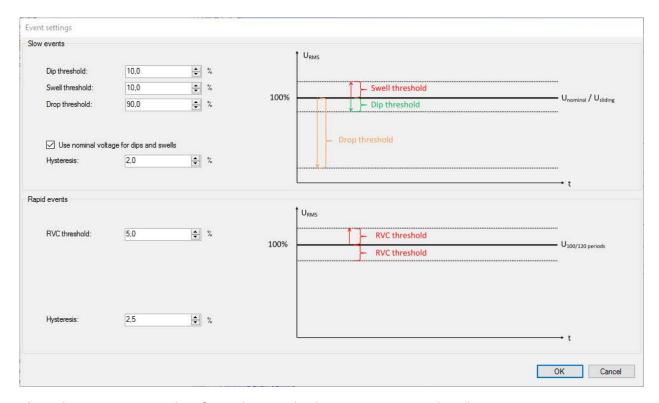

If *Enable currents* = TRUE, all current values are calculated additionally.

If "Only voltages" are selected under "Measured values", the "Enable currents" option is not available.

Configure limit profiles

Here you can create and manage limit profiles used in the *Spectrum* modules or triggers.

Issue 1.7 54

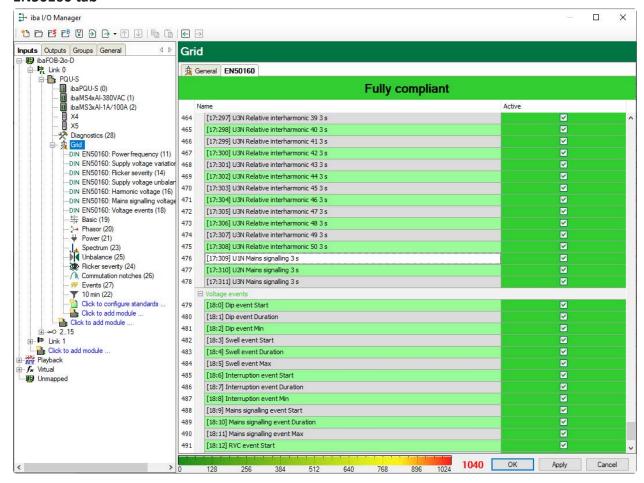


The predefined profiles can be used directly in relative spectra or triggers. To create a user-defined profile, click the button <+>. This allows creating profiles of the "relative" or "absolute" type.

Configure event settings

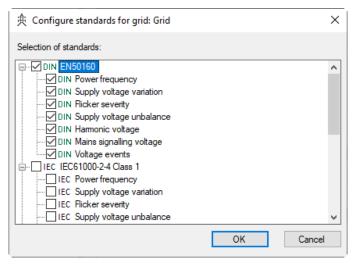
You can configure in this dialog the settings for the single events such as voltage dip, voltage swell etc.

55

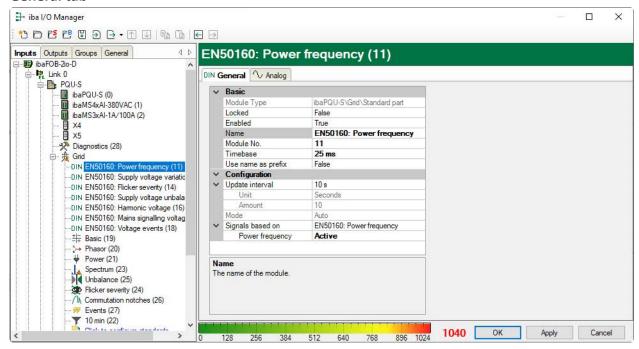


The values preset are taken from the standard IEC 61000-4-30 Ed. 3 class A.

Using the threshold values you can set the detection limit from which the corresponding event can be recognized. The hysteresis sets the point of time when the event can be considered as terminated.


Using the check box *Use nominal voltage for dips and swells* you can set if the threshold values and the hysteresis of the slow events refer to the nominal voltage or to a floating reference value.

EN50160 tab


The *EN50160* tab lists all signals calculated in the EN50160-compliant submodules. The message "Fully compliant" against a green background confirms compliance with the standard. If individual signals are disabled, the display changes to "Partially compliant" on a white background.

This tab is only displayed if you have configured the EN50160 standard by clicking "Click to configure standards...".

10.3.2 EN50160 submodule: Power frequency

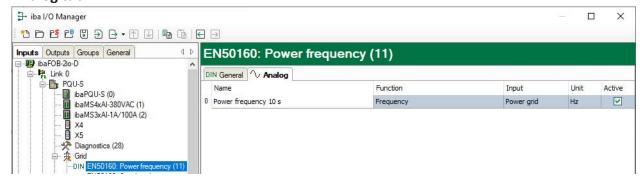
General tab

Basic settings

See **₹** PQU-S – General tab, page 43.

Time base

Each submodule has its own time base. The default setting should not be changed.


Configuration

The *Configuration* section shows the characteristic value that is determined by this module as well as the measurement interval. Here: Power frequency acc. to EN50160, 10 s

You can enable or disable all signals of this module via a drop-down menu.

Analog tab

iba

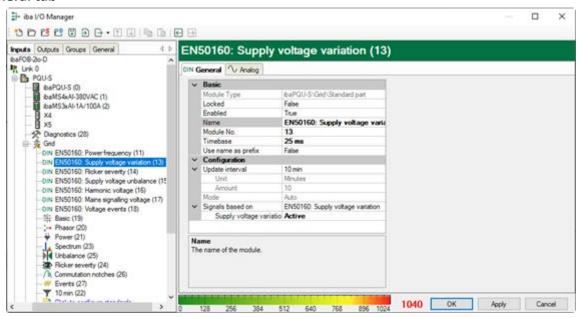
Note

All *Analog* tabs display the signals calculated in the corresponding submodule. It is not possible to delete signals or add new signals. However, the listed signals can be enabled or disabled individually.

Name

The names are already preset. For unambiguous identification, they contain the input channel, the characteristic value and the measurement interval. You can additionally assign two comments when clicking the symbol in the *Name* field.

Function, input, unit


Displays the corresponding property.

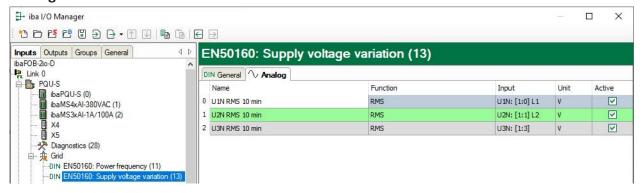
Active

Here you can enable or disable the signal.

10.3.3 EN50160 submodule: Supply voltage variation

General tab

Basic settings


See 7 EN50160 submodule: Power frequency, page 58.

Configuration

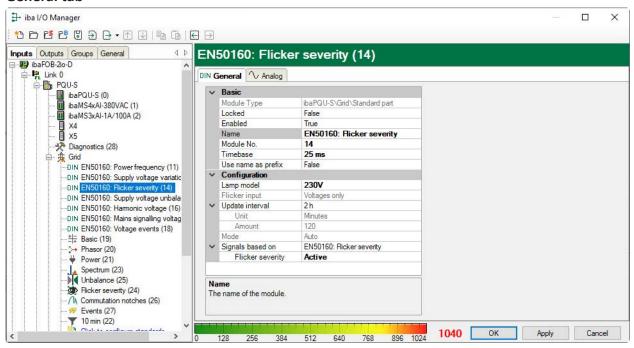
- The *Configuration* section shows the characteristic values determined by this module as well as the measurement interval. Here: Supply voltage variation acc. to EN50160, 10 min.
- You can enable or disable all signals of this module via a drop-down menu.

Analog tab

Name

The names are already preset. For unambiguous identification, they contain the input channel, the function and the measurement interval. You can additionally assign two comments when clicking the symbol in the *Name* field.

Function, input, unit


Displays the corresponding property.

Active

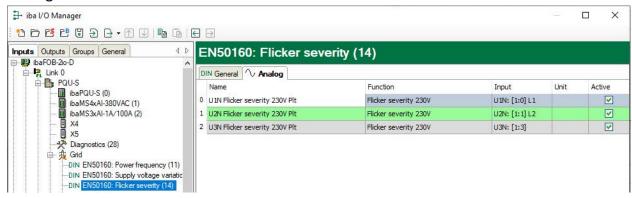
Here you can enable or disable the signal.

10.3.4 EN50160 submodule: Flicker severity

General tab

Issue 1.7 60 iba

Basic settings


See 7 EN50160 submodule: Power frequency, page 58.

Configuration

To calculate the flicker, the lamp model to be used, 230 V or 120 V, has to be specified.

If the "Enable currents" option is "True" in the grid options, you need to indicate for each conductor its impedance in Ohm.

Analog tab

Name

The names are already preset. For unambiguous identification, they contain the input channel, the characteristic value and the measurement interval.

61

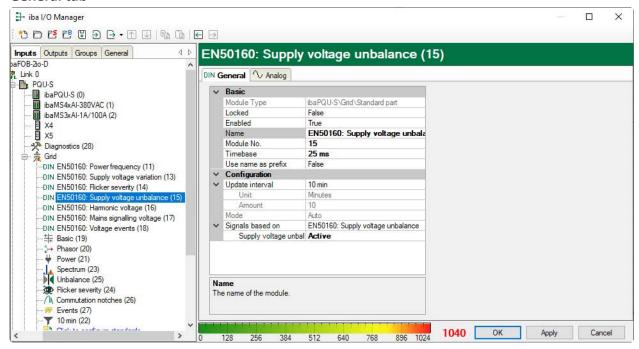
Function

Calculation function used by ibaPQU-S.

Input

The signal used for calculation.

Unit


Display of the relevant unit.

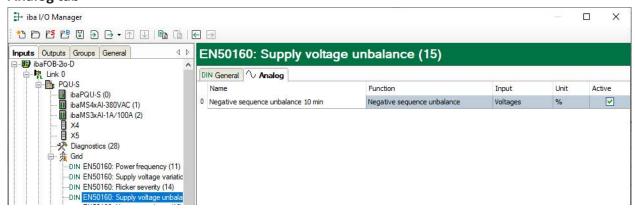
Active

Here you can enable or disable the signal.

10.3.5 EN50160 submodule: Supply voltage unbalance

General tab

Basic settings


See **₹** EN50160 submodule: Power frequency, page 58.

Configuration

- The *Configuration* section shows the characteristic values determined by this module as well as the measurement interval. Here: Supply voltage unbalance acc. to EN50160, 10 min.
- You can enable or disable all signals of this module via a drop-down menu.

Analog tab

Name

The names are already preset. For unambiguous identification, they contain the input channel, the characteristic value and the measurement interval.

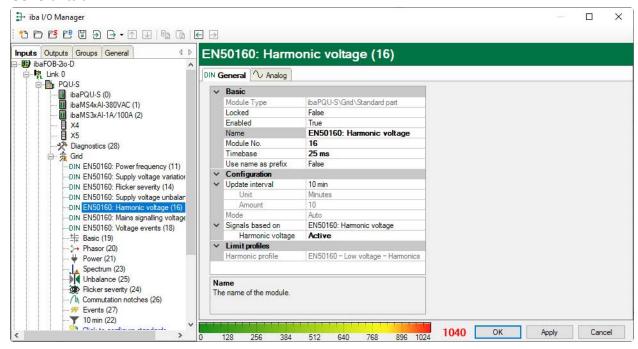
Function

Calculation function used by ibaPQU-S.

Input

The signals used for calculation.

Unit


Display of the relevant unit.

Active

Here you can enable or disable the signal.

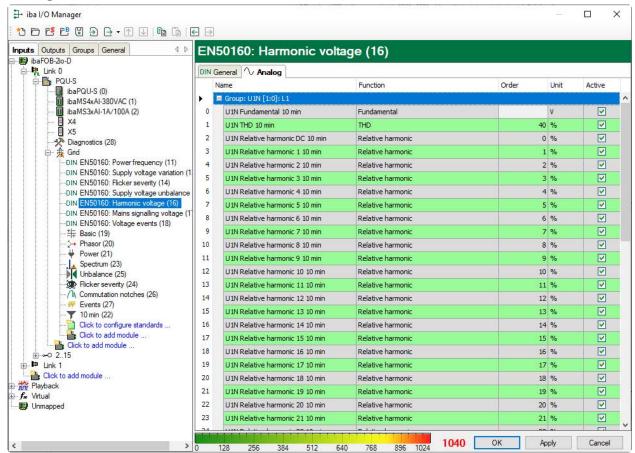
10.3.6 EN50160 submodule: Harmonic voltage

General tab

Note

The total number of *Harmonic voltage* and *Spectrum* submodules per *ibaPQU* must not exceed nine (9) to avoid overloading the system.

Basic settings


See 7 EN50160 submodule: Power frequency, page 58.

Configuration

- The *Configuration* section shows the characteristic values determined by this module as well as the measurement interval. Here: Harmonic voltage acc. to EN50160, 10 min.
- You can enable or disable all signals of this module via a drop-down menu.

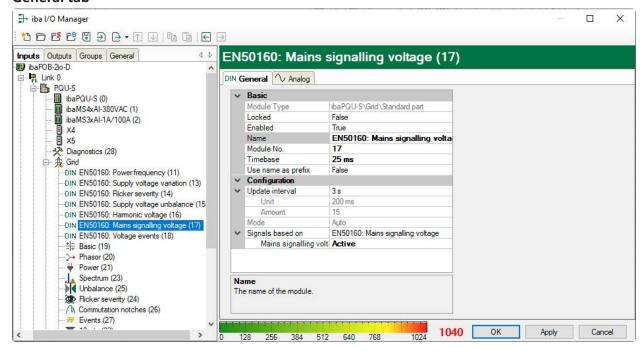
Analog tab

The EN50160 submodule: Harmonic voltage calculates the harmonics 1 - 50 for each input channel plus the fundamental frequency and the total harmonic distortion (THD) in 10 minute measurement intervals. To calculate the THD, the EN50160 standard only takes harmonics 1-40 into account. In the signal display, the signals are grouped by input. Click the <+> sign before the group name to show the signals of a group.

Name

The names are already preset. For unambiguous identification, they contain the input channel, the function, the order and the measurement interval. You can additionally assign two comments when clicking the symbol in the *Name* field.

Function, order, unit


Displays the corresponding property

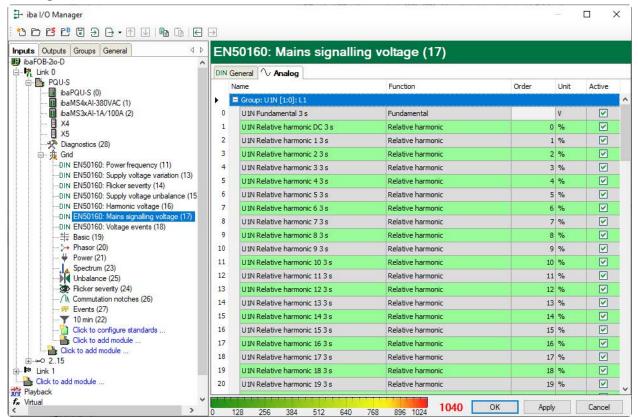
Active

Here you can enable or disable the signal.

10.3.7 EN50160 submodule: Mains signalling voltage

General tab

Basic settings


See **₹** EN50160 submodule: Power frequency, page 58.

Configuration

- The *Configuration* section shows the characteristic values determined by this module as well as the measurement interval. Here: Mains signalling voltage acc. to EN50160, 3 s.
- You can enable or disable all signals of this module via a drop-down menu.

Analog tab

The EN50160 submodule: Mains signalling voltage calculates the harmonics 1-50 and the interharmonics 1-50 for each input channel plus the fundamental frequency and the DC component, in 3 second measurement intervals. In the signal display, the signals are grouped by input. Click the <+> sign before the group name to show the signals of a group.

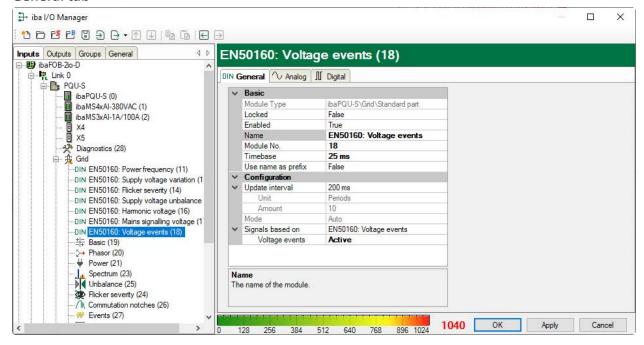
Name

The names are already preset. For unambiguous identification, they contain the input channel, the function and the measurement interval. You can additionally assign two comments when clicking the symbol in the *Name* field.

66

Function, order, unit

Displays the corresponding property


Active

Here you can enable or disable the signal.

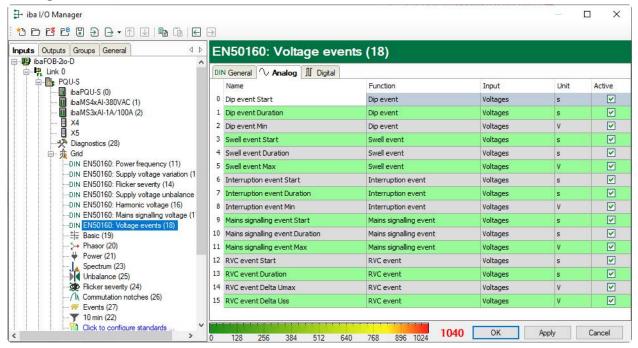
iba

10.3.8 EN50160 submodule: Voltage events

General tab

Basic settings

See 7 EN50160 submodule: Power frequency, page 58.


Configuration

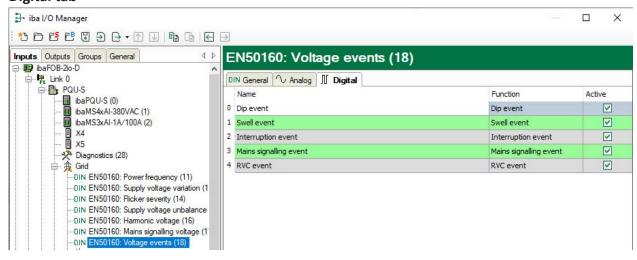
- The *Configuration* section shows the characteristic values determined by this module as well as the measurement interval. Here: Voltage events acc. to EN50160, half period.
- You can enable or disable all signals of this module via a drop-down menu.

iba

Analog tab

Name

The names of the voltage events are assigned by default. You can additionally assign two comments when clicking the symbol in the *Name* field.


Function, input, unit

Displays the corresponding property

Active

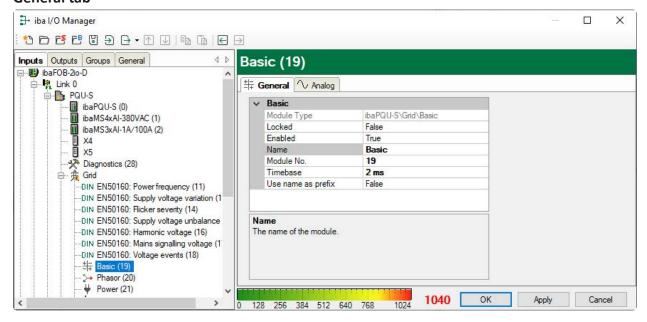
Here you can enable or disable the signal.

Digital tab

Name

The names of the voltage events are assigned by default. You can additionally assign two comments when clicking the symbol in the *Name* field.

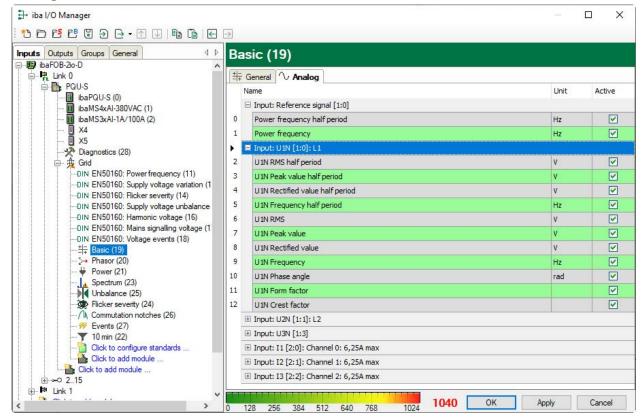
Function


Displays the corresponding property

Active

Here you can enable or disable the signal.

10.3.9 Basic submodule


General tab

Basic settings

See **7** EN50160 submodule: Power frequency, page 58.

Analog tab

The Basic submodule acquires the following characteristic values:

- Power frequency in 200 ms and half period measurement intervals, respectively
- For each input: RMS value, peak value, rectified value and frequency in 200 ms and half period measurement intervals
- For each input: Phase angle, form factor, crest factor, measurement interval 200 ms.

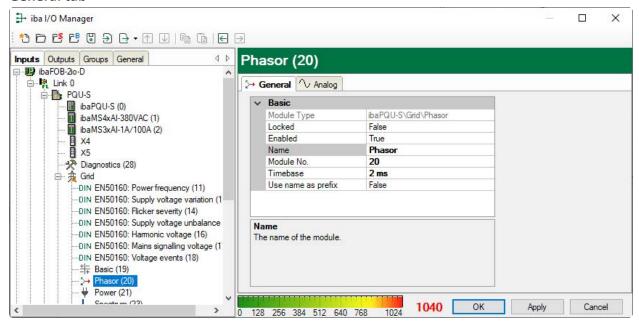
In the signal display, the signals are grouped by input. Click the <+> sign before the group name to show the signals of a group.

Name

The names are set by default but can be edited. For unambiguous identification, they contain the input channel and the characteristic value. You can additionally assign two comments when clicking the symbol in the *Name* field.

70

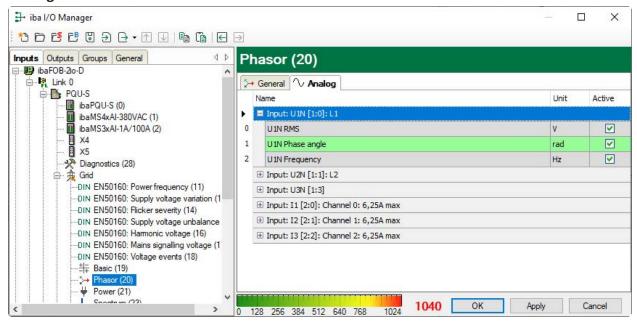
Unit


Display of the relevant unit.

Active

Here you can enable or disable the signal.

10.3.10 Phasor submodule


General tab

Basic settings

See 7 EN50160 submodule: Power frequency, page 58.

Analog tab

The Phasor submodule acquires the following characteristic values for each input:

■ RMS value, phase angle, frequency, measurement interval 200 ms

In the signal display, the signals are grouped by input. Click the <+> sign before the group name to show the signals of a group.

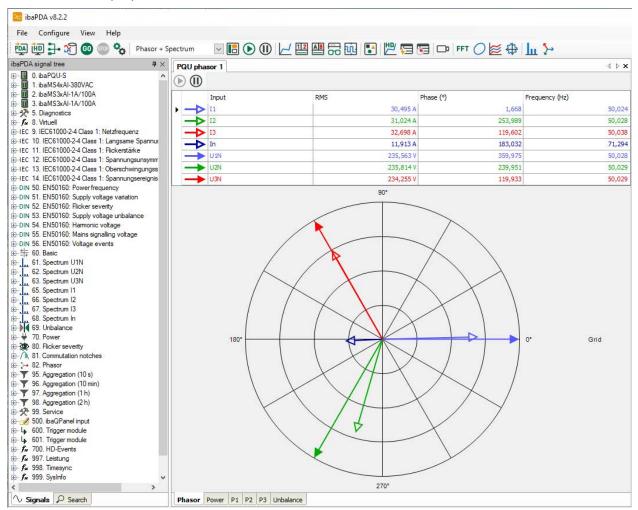
Name

The names are set by default but can be edited. For unambiguous identification, they contain the input channel and the characteristic value. You can additionally assign two comments when clicking the symbol in the *Name* field.

Unit

Display of the unit.

Active


Here you can enable or disable the signal.

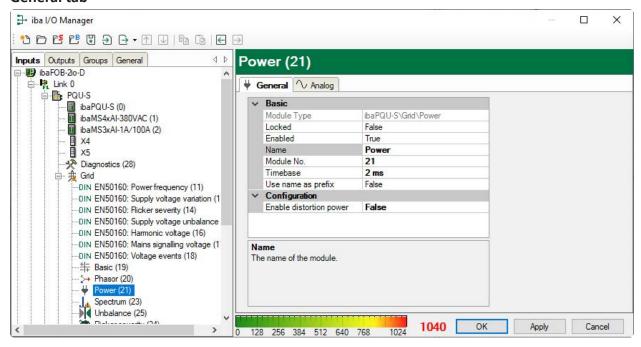
Display in the phasor diagram (phasor view)

The voltage and current characteristics of the 3 phases can be visualized in a phasor diagram.

You can open the display of a pointer diagram by clicking on the button \nearrow in the toolbar of *ibaPDA*.

Hold the mouse button down and drag the Phasor or Basic module from the signal tree on the left onto the display.

- Filled arrowheads: RMS value of voltage in the corresponding phase angle
- Empty arrowheads: RMS value of current in the corresponding phase angle


Note

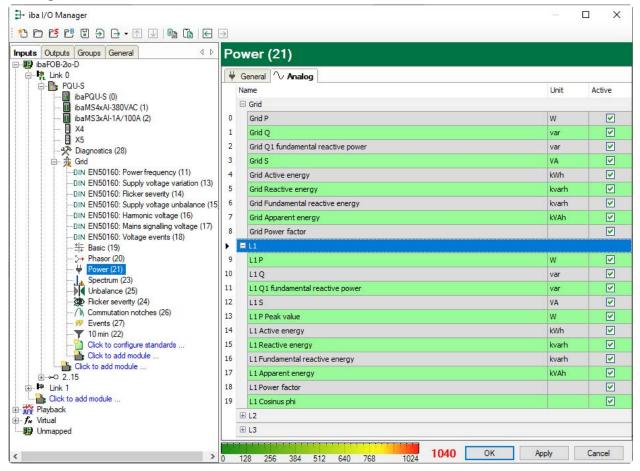
In TN systems (TN-C, TN-S, TN-C-S), measurements are made against the neutral point (neutral conductor N). Since there is no connection to the neutral point in IT systems, a different representation may occur in IT systems.

10.3.11 Power submodule

General tab

Basic settings

See **₹** EN50160 submodule: Power frequency, page 58.


Configuration

Enable distortion power

Set this option to "True" if you want to activate the calculation of the distortion power.

73

Analog tab

Depending on the AC/DC setting and the configured grid inputs, the *Analog* tab contains different characteristic values.

AC/DC = DC

Only active power, peak value and active energy are calculated.

AC/DC = AC

The following values are calculated for each phase:

- Active power & active energy
- Reactive power & reactive energy (with and without sign)
- Apparent power & apparent energy
- Fundamental reactive power & fundamental reactive energy
- Distortion power & distortion energy
- Peak value
- Power factor
- cos Phi

In a star grid with N/PE and in a grid without N/PE, the above values are also calculated for the overall grid, with the exception of cos phi and peak value.

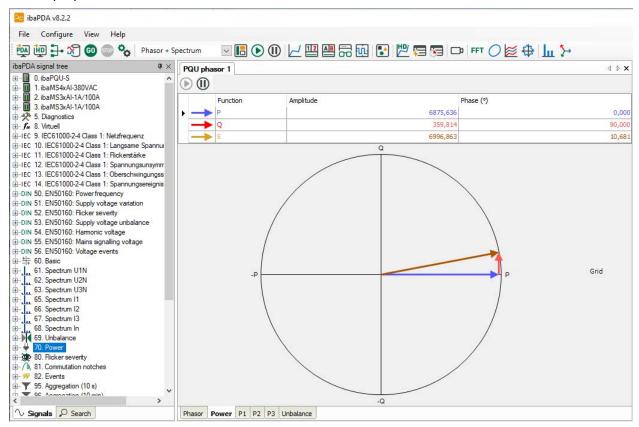
Name

The names are set by default but can be edited. For unambiguous identification, they contain the input channel and the characteristic value. You can additionally assign two comments when clicking the symbol in the *Name* field.

Unit

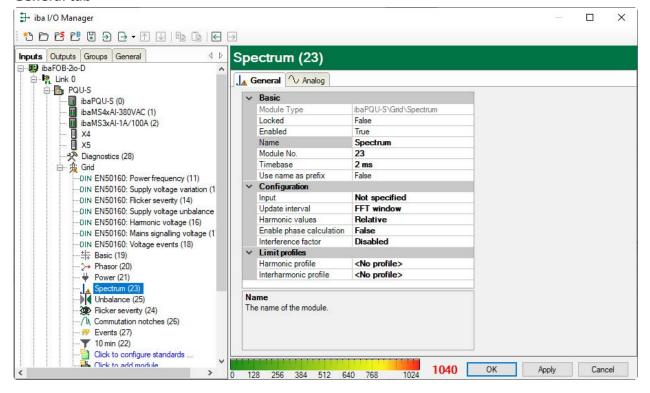
Display of the unit.

Active


Here you can enable or disable the signal.

Display in the phasor diagram

The power characteristic values can be visualized phase-wise or for the entire grid using a phasor diagram.


You can open the display of a pointer diagram by clicking on the button in the toolbar of

Hold the mouse button down and drag the *Power* module from the signal tree on the left onto the display.

10.3.12 Spectrum submodule

General tab

Note

The total number of *Harmonic voltage* and *Spectrum* submodules per *ibaPQU* must not exceed nine (9) to avoid overloading the system.

Basic settings

See **₹** EN50160 submodule: Power frequency, page 58.

Limit profiles

With this option you can predefine a limit profile for the harmonics or the interharmonics. This profile can be displayed in the *Spectrum* view. In addition, the predefined limits are saved as additional information in order to facilitate a later analysis.

You can find out how to configure additional profiles in chapter **7** Grid module, page 52.

Configuration

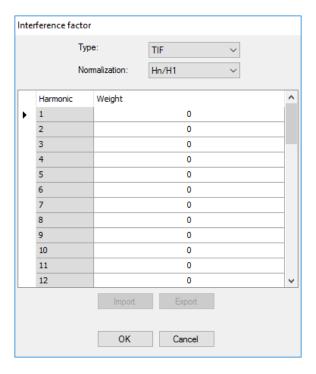
Input

Select the input signal.

Update time

If the spectrum is required in another update time than 200 ms, you can set here as a default which time interval should be used.

iba


Harmonics values

Select whether to measure relative or absolute harmonics/interharmonics.

Enable phase calculation

The corresponding phases for the harmonic values are also calculated.

Interference factor

Different calculation types can be selected for an interference factor.

■ Type:

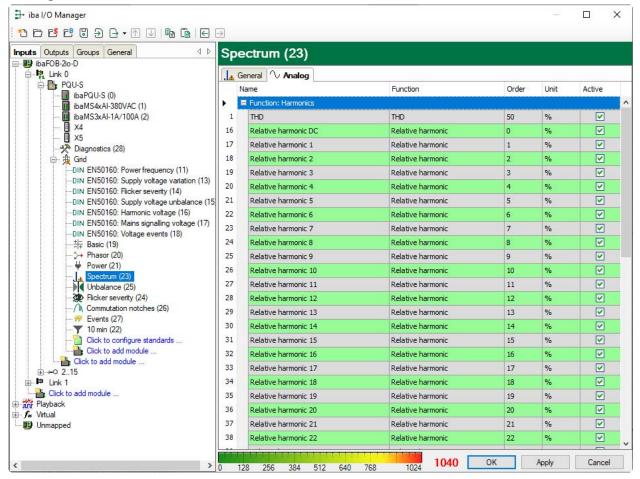
TIF (acc. to IEEE Std. 519): Describes the effects of harmonic voltages or currents on communication systems near transmission lines.

THFF: European version of the TIF defined by the CCITT (Comité Consultatif International Téléphonique et Télégraphique), now ITU-T, in 1978.

Linear: General calculation formula with harmonic values without squaring.

Square: General calculation formula with squared harmonics

Psophometry up to 50th harmonic can be mapped using the type *square* and the normalization *Hn*.


Since *ibaPDA* supports only one weighting factor per harmonic, the factors have to be multiplied first for psophometry and specified as total weighting factor per harmonic.

■ Normalization:

Hn/H1: All harmonics are normalized to the value of the fundamental frequency, i.e. divided by this value. This corresponds to the relative values in *ibaPDA*, however without the factor 100 for percent.

Hn/RMS: All harmonics are normalized to the RMS value, i.e. divided by the RMS value *Hn*: absolute value of the harmonics

Analog tab

The Spectrum submodule calculates the absolute or relative harmonics 1-50 and the absolute or relative interharmonics 1-50 for the selected input channel plus the fundamental frequency and the total harmonic distortion in the 200 ms measurement interval.

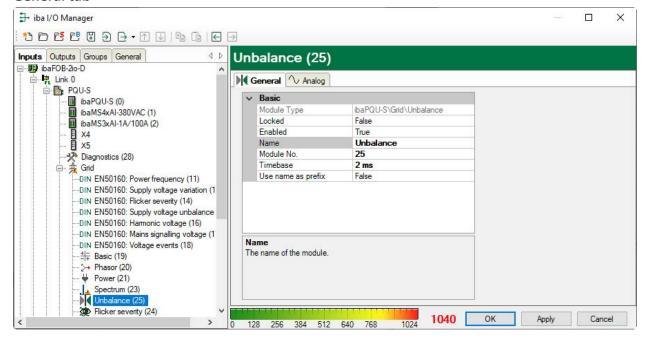
Name

The names are already preset. For unambiguous identification, they contain the input channel and the characteristic value. You can additionally assign two comments when clicking the symbol in the *Name* field.

78

Function, order, unit

Displays the properties

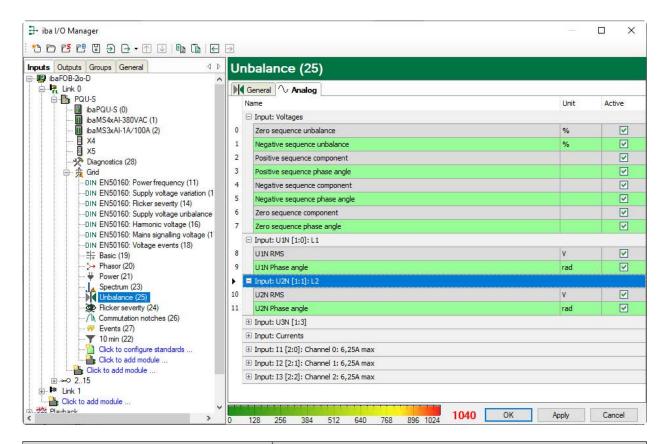

Active

Here you can enable or disable the signal.

iba

10.3.13 Unbalance submodule

General tab


Basic settings

See 7 EN50160 submodule: Power frequency, page 58.

Analog tab

The Analog tab is only available for star grid with N/PE and a grid without N/PE.

If the submodule is configured for a different grid, it is disabled when starting the measurement and a warning is displayed.

Signal	Description
Zero sequence unbalance	Ratio of zero sequence component to positive sequence component in percent
Negative sequence unbalance	Ratio of negative sequence component to positive sequence component in percent
Positive sequence component	Percentage of symmetrical voltage vectors (*) in rotation direction
Angle of the positive sequence component	Phase shift of the positive sequence component percentage of U1 compared to the reference signal
Negative sequence component	Percentage of symmetrical voltage vectors, against the rotation direction
Angle of the negative sequence component	Phase shift of the negative sequence component percentage of U1 compared to the reference signal
Zero sequence component	Percentage of voltage vectors all showing in the same direction
Angle of the zero sequence component	Direction of the zero sequence component of the voltage vectors

^(*) The voltage vector is formed from the RMS value of the voltage (as vector length) and the current phase (as vector angle).

Name

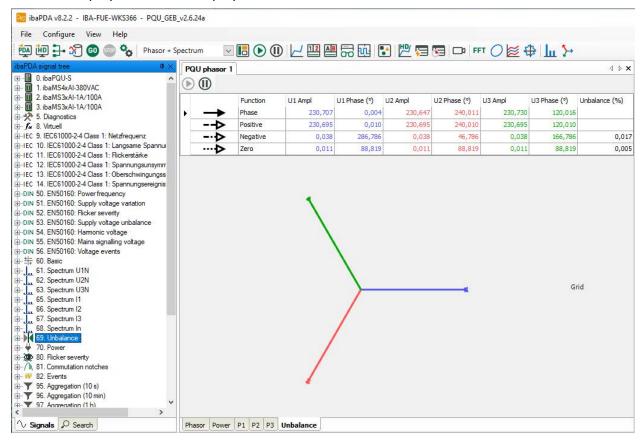
The names are set by default but can be edited. For unambiguous identification, they contain the input channel and the characteristic value. You can additionally assign two comments when clicking the symbol in the *Name* field.

Issue 1.7 80

Unit

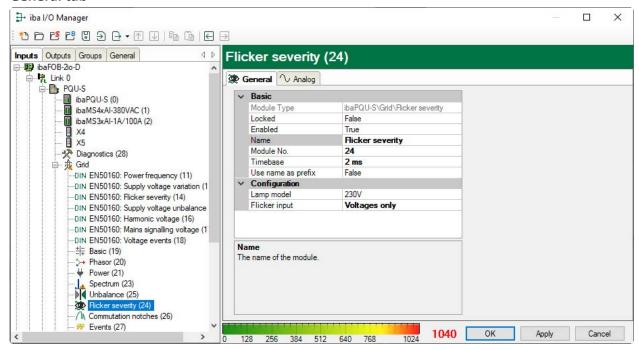
Display of the relevant unit.

Active


Here you can enable or disable the signal.

Display in the phasor diagram

The voltage unbalance can be visualized using the phasor diagram.


You can open the display of a pointer diagram by clicking on the button $\stackrel{\triangleright}{\sim}$ in the toolbar of *ibaPDA*.

Hold the mouse button down and drag the *Unbalance* module from the signal tree on the left onto the display. Switch the display to unbalance.

10.3.14 Flicker severity submodule

General tab

Basic settings

See **₹** EN50160 submodule: Power frequency, page 58.

Configuration

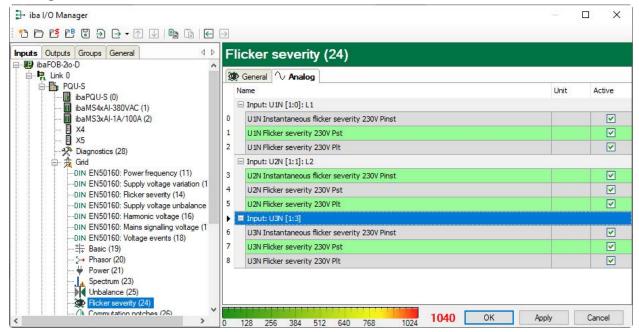
Lamp model

To calculate the flicker, the lamp model to be used, 230 V or 120 V, has to be specified.

Flicker input

Only voltages

For the calculation only voltages are being used.


Only currents

For the calculation only currents are being used. For this purpose, you need to indicate for each conductor its impedance in Ohm.

Voltages and currents

The flicker for voltages and currents is calculated. For the current flicker calculation you need to indicate the impedance of the single conductors.

Analog tab

Signal	Description
U# Instantaneous flicker severity ###V half period	Value for the current flicker severity
U# Flicker severity ###V 10 min	Short-term flicker level Pst
U# Flicker severity ###V 2 h	Flicker value according to a cubic average of Pst values

Name

The names are set by default but can be edited. For unambiguous identification, they contain the input channel and the characteristic value. You can additionally assign two comments when clicking the symbol in the *Name* field.

Unit

Display of the relevant unit.

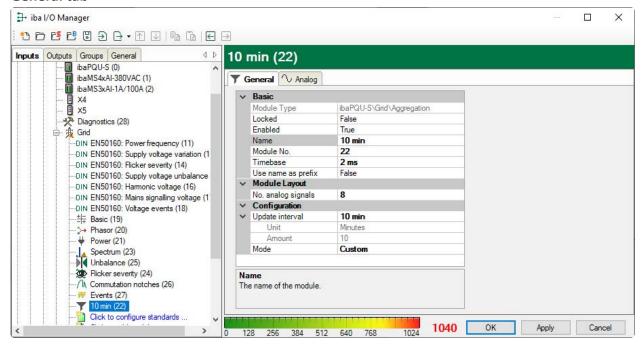
Active

Here you can enable or disable the signal.

10.3.15 Aggregation submodule

The Aggregation submodule is a freely configurable module in which the measurement interval and the characteristic values can be selected individually. The submodule name is assigned automatically by *ibaPDA* and is in accordance with the set measurement interval. The default setting is 10 min. If the measurement interval is modified, the module name will change accordingly.

Issue 1.7 83


Note

Details on the aggregation method:

- For the standard update intervals (200 ms, 3 s, 10 s, 10 min, 2 h) the aggregation method is listed in the table **7** Calculated characteristic values, page 27.
- The following aggregation is applied for the "Custom" update interval:
 - Energy value: Total of 10/12 period values
 - Flicker: Cubic average of Pst values
 - For all other calculations the quadratic average is being used.

General tab

Basic settings

See 7 EN50160 submodule: Power frequency, page 58.

Module layout

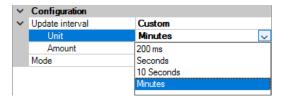
No. analog signals

Enter the number of desired signals here. The number determines the length of the signal table in the *Analog* tab.

Configuration

Update time

Select the measurement interval here.

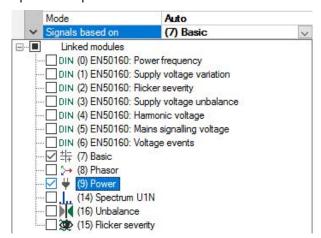

■ The following default intervals are available: 200 ms, 3 s, 10 s, 10 min or 2 h

If you choose a default interval, the Unit and Amount fields will show the matching values and cannot be edited.

Custom

The "Custom" selection allows you to freely define the measurement interval using the Unit and Amount fields.

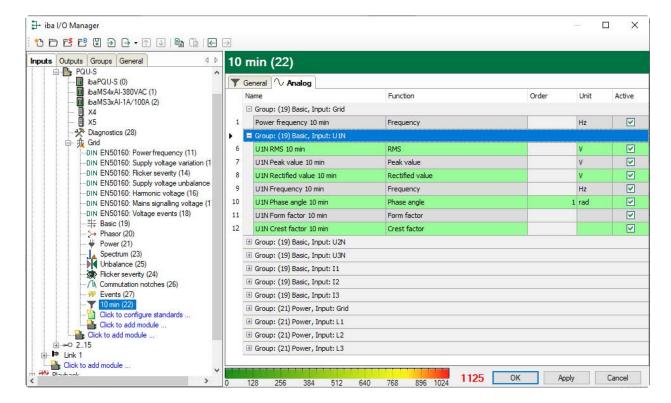
Select the unit:


Enter the amount (number of units) as an integer value into the field.

The defined amount and the unit determine the measurement interval and automatically the name of the module.

Mode

- Custom: Select "Custom" to configure the analog signals in the Analog tab to your preferences.
- Auto: Select "Auto" to show the additional line "Signals based on". Click on the arrow to open a drop-down menu that contains all submodules that have already been created:



The submodules can be selected individually. The characteristic values configured in them serve as the basis for the new measurement, however with the measurement interval defined here.

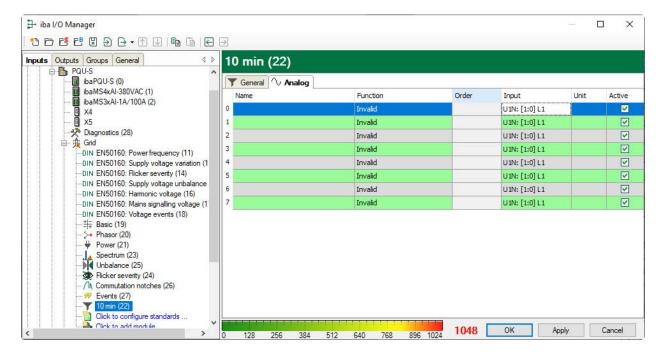
Analog tab

The display in the Analog tab depends on the settings in the General tab.

In the following example, we selected "Auto" mode and the submodules *Basic* and *Power*. The characteristic values defined in the submodules are listed in the *Analog* tab.

Name

The names are already preset. For unambiguous identification, they contain the input channel and the characteristic value. You can additionally assign two comments when clicking the symbol in the *Name* field.

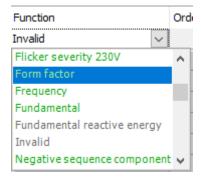

Function, order, unit

Displays the properties

Active

Here you can enable or disable the signal.

In the following example, the "Custom" mode was selected. The *Analog* tab shows no entries at first.



Name

You can select any name. You can additionally assign two comments when clicking the symbol in the *Name* field.

Function

Select the characteristic value to be calculated from the drop-down menu: Phase, Peak value, ...

The calculations applicable to the selected input signal are shown in green.

Order

If one of the harmonics or interharmonics is selected under *Function*, you can enter the order 1-50 here.

Input

Select the input to be measured.

iba

The input signals that match the selected function are displayed in green.

Unit

The unit is inserted automatically.

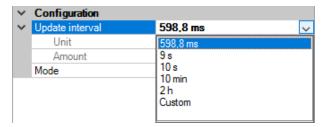
Active

Here you can enable or disable the signal.

Special considerations for grids with user-defined nominal frequencies

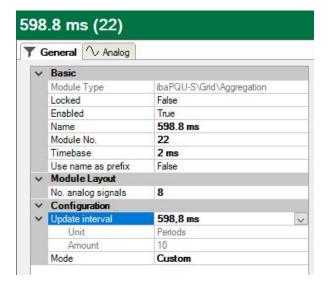
In addition to grids with 50 Hz and 60 Hz nominal frequency, *ibaPQU-S* also allows taking measurements in grids with a user-defined frequency. If a user-defined power frequency is set (in the *PQU-S* module), this will influence the length of the 200 ms measurement interval and the naming in the *Aggregation* submodule.

With a 200 ms interval, exactly 10 periods are measured in 50 Hz grids and 12 periods in 60 Hz grids, equivalent to exactly 200 ms.

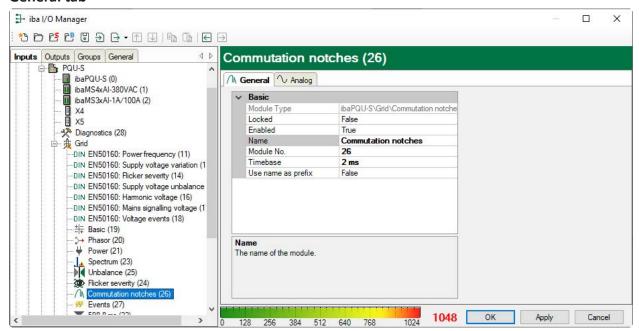

With user-defined power frequencies, 10 or 12 periods are measured accordingly: 10 periods for power frequencies \geq 10 Hz and < 51 Hz, and 12 periods for power frequencies \geq 51 Hz and < 80 Hz.

For the set power frequency, the interval time is then calculated for 10 or 12 periods.

Example:

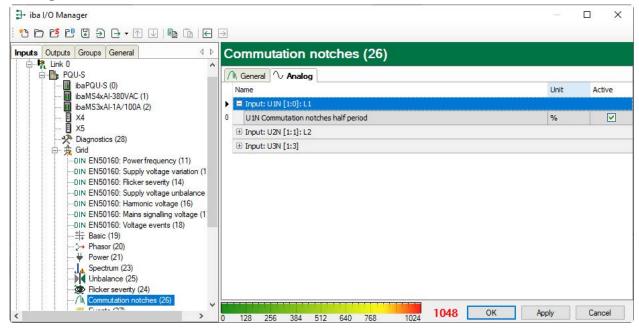

If 16.7 Hz power frequency is set, 10 periods are measured. The measurement interval is calculated for 10 periods and is 598.8 ms.

The interval of 598.8 ms is then also displayed in the drop-down menu and replaces the 200 ms interval.


The calculated measurement interval also determines the module name.

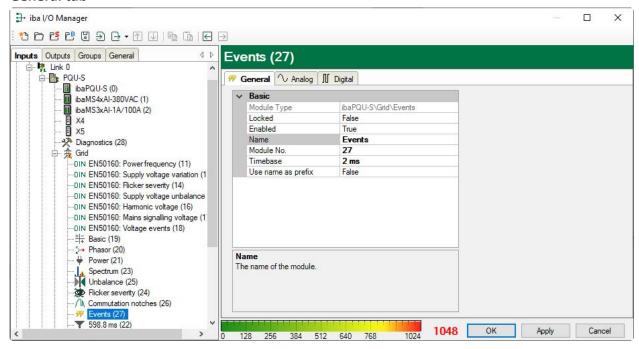
iba

10.3.16 Commutation notches submodule


General tab

Basic settings

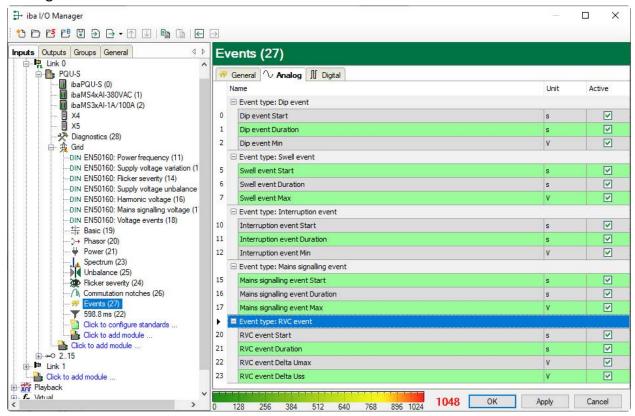
See **7** EN50160 submodule: Power frequency, page 58.


Analog tab

Signals: Depth of notch per phase in percent

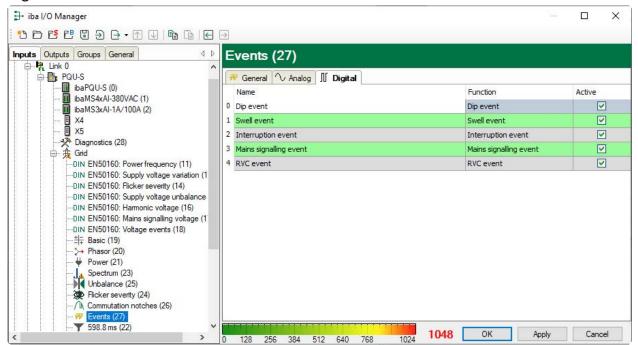
10.3.17 Events submodule

General tab



Basic settings

See **₹** EN50160 submodule: Power frequency, page 58.


The configuration of the event limit values can be found in chapter **7** *Grid module*, page 52.

Analog tab

Signal	Description	
Start	How many seconds ago did the event start	
Duration	Duration of the event	
Min/Max	Minimum / maximum voltage value	
Delta Umax / Delta Uss	Delta Umax:	
	RMS value that was furthest from the floating average.	
	Delta Uss:	
	Difference between Uss and the start of the event and Uss and the end of the event.	
	Uss:	
	Floating average of the half period RMS value over 1 second	

Digital tab

The listed signals here are "True" as soon as the corresponding event is pending. Thus, a simple triggering to the pending event is possible.

11 Technical data

In the following you will find the technical data and dimensions for *ibaPQU-S*.

11.1 Main data

Short description

Name	ibaPQU-S
Description	Central unit for (iba modular system) Power Quality
	Monitoring applications
Order number	10.150000

Processor unit

Processor	1.6 / 1.75 GHz Atom processor, dual core CPU
Flash memory	Solid-state drive
Clock	Unbuffered / external buffering possible

Supply, operating and indicating elements

Power supply	24 V DC ,±10 % not stabilized,
	1 A (without I/O modules), 3 A (with I/O modules)
Power consumption	Max. 20 W (central unit only)
Indicators	4 LEDs for operating status of the device
	8 LEDs for state of digital inputs

Operating and environmental conditions

Cooling	Passive
Operating temperature	32 °F to 122 °F (0 °C to 50 °C)
Storage and transport temperature	-13 °F to 158 °F (-25 °C to 70 °C)
Mounting position	Vertical, plugged into backplane
Installation height	Up to 6562 ft (2000 m)
Humidity class acc. to DIN 40040	F, no condensation
Protection class	IP20

Certification/Standards	EMC: IEC 61326-1
	FCC part 15 class A
	IEC 61000-4-30:2015 Class A
	IEC 61000-4-15:2010
	IEC 61000-4-4:2012
	IEC 61180:2016
	IEC 62586-2:2013
MTBF ¹⁾	255,939 hours / ca. 29 years

Dimensions and weight

Dimensions (width x height x depth)	2.1 in x 7.9 in x 5.6 in (56 mm x 214 mm x 148 mm)
	With backplane: 2.1 in x 7.9 in x 5.6 in (229 mm x 219 mm x 156 mm)
	11111 x 130 11111)
Weight	1.5 kg (incl. packing and documentation)

11.2 Declaration of conformity

Supplier's Declaration of Conformity
47 CFR § 2.1077 Compliance Information

Unique Identifier: 10.150000 ibaPQU-S

Responsible Party - U.S. Contact Information

iba America, LLC

370 Winkler Drive, Suite C

Alpharetta, Georgia

30004

(770) 886-2318-102

www.iba-america.com

FCC Compliance Statement

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

11.3 Interfaces

ibaNet

Number	1 (e. g. for the connection to ibaPDA)
ibaNet protocol	32Mbit Flex (bidirectional)

¹⁾ MTBF (mean time between failure) according to Telcordia 3 SR232 (Reliability Prediction Procedure of Electronic Equipment; Issue 3 Jan. 2011 and NPRD, Non-electronic Parts Reliability Data 2011

Issue 1.7 94

Connector type	2 ST connectors for RX and TX;	
	iba recommends the use of FO with multimode fibers of type 50/125 μ m or 62.5/125 μ m;	
	For information on cable ler budget calculation, page 10	• , ,
Transmitting interface (TX)		
Output power	50/125 μm FO cable:	-19.8 dBm to -12.8 dBm
	62.5/125 μm FO cable:	-16 dBm to -9 dBm
	100/140 μm FO cable:	-12.5 dBm to -5.5 dBm
	200 μm FO cable:	-8.5 dBm to -1.5 dBm
Temperature range	-40 °F to 185 °F (-40 °C to 85 °C)	
Light wavelength	850 nm	
Laser class	Class 1	
Receiving interface (RX)		
Receiving sensibility ²⁾	100/140 μm FO cable:	-33.2 dBm to -26.7 dBm
Temperature range	-40 °F to 185 °F (-40 °C to 85 °C)	

Other interfaces

Ethernet	10/100 Mbit/s
USB	2x host, 1x device for service purposes

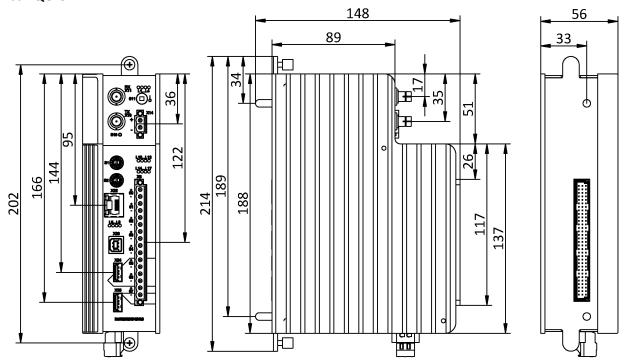
11.4 Digital inputs

Number	8
Design	Galvanically isolated, protected against reverse polarity, single ended
Debounce filter	Optional with 4 different settings
Input signal	24 V DC
Max. input voltage	±60 V permanent
Signal level log. 0	> -6 V; < +6 V
Signal level log. 1	< -10 V; > +10 V
Input current	1 mA, constant
Debounce filter	Optional with 4 operating modes
Sampling rate	Max. 40 kHz, freely adjustable
Delay	Type 10 μs
Electrical isolation	
Channel-channel	2.5 kV AC
Channel-housing	2.5 kV AC

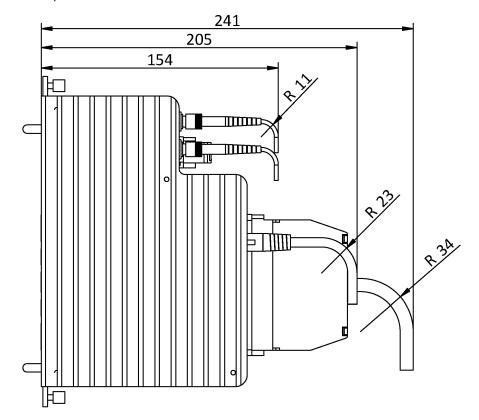
²⁾ Information on other fiber optic cable diameters not specified

Connector type	16-pin connector, connector with clamp-type terminals
	(0.2 mm ² to 2.5 mm ²), can be screwed, included in de-
	livery

11.5 Grid characteristics

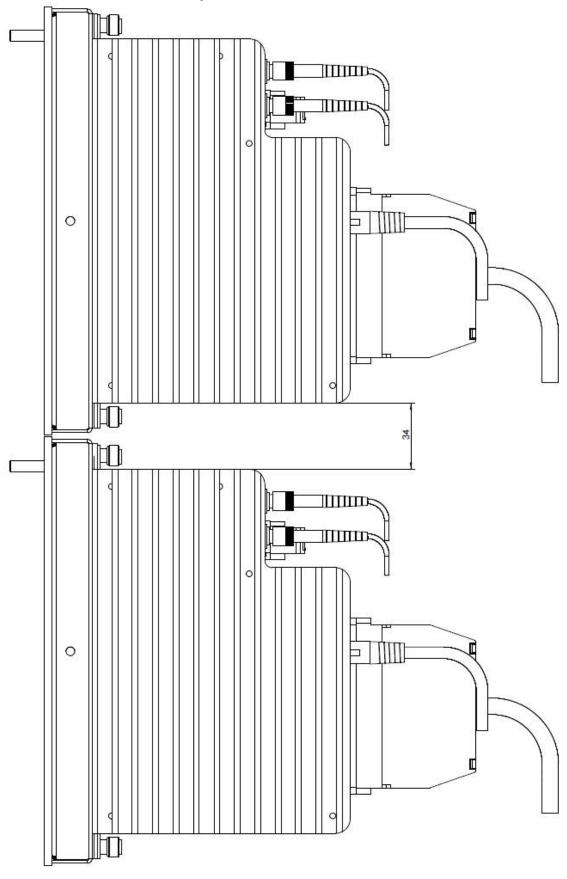

Grid type	1-phase grid, 3-phase grid without N/PE, 3-phase grid with N/PE
Grid frequency	10-80 Hz

Characteristic values	Calculat	ion time					Grid t	type	
	Half period	10/12	150/180	10 s	10 min	2 h	1	3	3+N
RMS	•	•	•	•	•	•	•	•	•
Peak	•	•	•	•	•	•	•	•	•
Rectified	•	•	•	•	•	•	•	•	•
Form factor	-	•	•	•	•	•	•	•	•
Crest factor	-	•	•	•	•	•	•	•	•
Frequency	•	•	•	•	•	•	•	•	•
Phase	-	•	•	•	•	•	•	•	•
Harmonics	-	•	•	•	•	•	•	•	•
Interharmonics	-	•	•	•	•	•	•	•	•
THD	-	•	•	•	•	•	•	•	•
TIF	-	•	•	•	•	•	•	•	•
Mains signalling	-	•	•	•	•	•	•	•	•
Power/energy	-	•	•	•	•	•	•	•	•
Power/energy VA	-	•	•	•	•	•	•	•	•
Power/energy VAr	-	•	•	•	•	•	•	•	•
Fundamental reactive power/energy	-	•	•	•	•	•	•	•	•
Power factor	-	•	•	•	•	•	•	•	•
Cos φ	-	•	•	•	•	•	•	•	•
Positive/negative/ zero sequence com- ponent	-	•	•	•	•	•	-	-	•
Unbalance	-	•	•	•	•	•	-	•	•
Flicker (Pinst, Pst, Plt)	•	-	-	-	•	•	•	•	•
Events	-	•	-	-	-	-	•	•	•
Commutation notches	•	-	-	-	-	-	•	•	•


For more detailed information on grid characteristics, please refer to chapter **7** *Grid types*, page 26 and chapter **7** *Signals and calculated characteristic values*, page 26.

11.6 Dimensions

ibaPQU-S



(dimensions in mm)

Dimensions ibaPQU-S with cables (dimensions in mm)

Distance between two ibaPQU-S systems

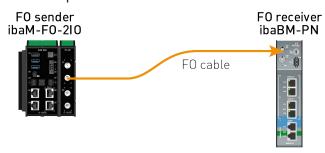
(dimensions in mm)

11.7 Connection diagrams

11.7.1 Pin assignment power supply X14

Pin	Connection	
1	+ 24 V	
2	0 V	

11.7.2 Pin assignment digital inputs X5


Pin	Connection	
1	Digital input 00 +	
2	Digital input 00 -	_
3	Digital input 01 +	\
4	Digital input 01 -	(-
5	Digital input 02 +	<u> </u>
6	Digital input 02 -	<u></u>
7	Digital input 03 +	>_
8	Digital input 03 -	>_
9	Digital input 04 +	>
10	Digital input 04 -	>_
11	Digital input 05 +	<u>_</u>
12	Digital input 05 -	(-
13	Digital input 06 +	<u> </u>
14	Digital input 06 -	
15	Digital input 07 +	>_
16	Digital input 07 -	

99

11.8 Example for FO budget calculation

A fiber optic link from an *ibaM-FO-2IO* module (FO transmitter) to an *ibaBM-PN* device (FO receiver) is used as an example.

The example only considers the transmission direction from the *ibaM-FO-2IO* module to the *ibaBM-PN* device. In actual operation, a connection from the *ibaBM-PN* device to the *ibaM-FO-2IO* module is also required.

The example refers to a P2P connection with an FO cable of type 62.5/125 μm . The light wavelength used is 850 nm.

The range of the minimum and maximum values of the output power or receiver sensitivity depends on the component and, among other things, on temperature and aging.

For the calculation, the specified output power of the transmitting device and, on the other side, the specified sensitivity of the receiving device must be used in each case. You will find the corresponding values in the relevant device manual in the chapter "Technical data" under "ibaNet interface".

ibaM-FO-2IO specification

Output power of FO transmitting interface		
FO cable in μm	Min.	Max.
62.5/125	-16 dBm	-9 dBm

ibaBM-PN specification

Sensitivity of FO receiving interface		
FO cable in μm	Min.	Max.
62.5/125	-30 dBm	

Specification FO cable

Refer to the data sheet for the fiber optic cable used:

FO cable	62.5/125 μm
Connector loss	0.5 dB connector
Cable attenuation at 850 nm wavelength	3.5 dB / km

Issue 1.7 100

$$A_{Budget} = |(P_{Receiver} - P_{Sender})|$$

 $P_{Receiver}$ = sensitivity of FO receiving interface

P_{Sender} = output power of FO transmitting interface

Equation for calculating the fiber optic cable length (I_{Max}) :

$$l_{Max} = \frac{A_{Budget} - (2 \cdot A_{Connector})}{A_{Fiberoptic}}$$

A_{Connector} = connector loss

A_{Fiberoptic} = cable attenuation

Calculation for the example ibaM-FO-2IO -> ibaBM-PN in the best case:

$$A_{Budget} = |(-30 dBm - (-9 dBm))| = 21dB$$

$$l_{Max} = \frac{21dB - (2 \cdot 0.5dB)}{3.5 \frac{dB}{km}} = 5.71 \text{km}$$

Calculation for the example ibaM-FO-2IO -> ibaBM-PN in the worst case:

$$A_{Budget} = |-30 \ dBm - (-16 \ dBm)| = 14 dB$$

$$l_{Max} = \frac{14dB - (2 \cdot 0.5dB)}{3.5 \frac{dB}{km}} = 3.71 \text{km}$$

Note

When connecting several devices as a daisy chain or as a ring (e.g., *ibaPADU-S-CM* with 32Mbit Flex), the maximum distance applies to the section between two devices. The FO signals are re-amplified in each device.

Note

When using fiber optics of the 50/125 μm type, a reduced distance (by approx. 30–40%) must be expected.

Note

In addition to conventional multimode cable types OM1 (62.5/125 μ m) and OM2 (50/125 μ m), the other cable types OM3, OM4 and OM5 of the 50/125 μ m fiber can also be used.

iba

12 Accessories and related products

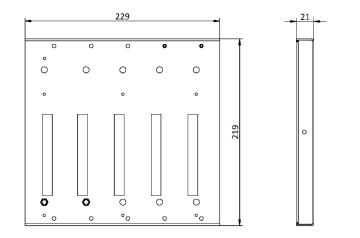
12.1 Backplane panels

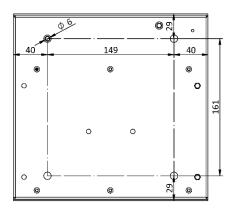
12.1.1 ibaPADU-S-B4S

Backplane panel for mounting 1 central unit and up to 4 I/O modules.

12.1.1.1 Scope of delivery – ibaPADU-S-B4S

The scope of delivery of the *ibaPADU-S-B4S* backplane panel includes:


- Backplane panel
- Assembly kit



Assembly kit

12.1.1.2 Dimensions – ibaPADU-S-B4S

(dimensions in mm)

12.1.1.3 Grounding – ibaPADU-S-B4S

For grounding the backplane panel use the enclosed grounding cable and the enclosed grounding screws as shown below.

- 1 Spring lock washer
- 2 Ground wire with cable lug
- 3 Contact washer

12.1.1.4 Technical data – ibaPADU-S-B4S

Short description

Product name	ibaPADU-S-B4S
Description	Backplane panel for 1 central unit and up to 4 I/O
	modules from the iba modular system
Order number	10.124000

Interface central unit

Number	1
Connection technology	Female header, pole number 3 x 32
Slot	X1

Interface I/O modules

Number	4
Connection technology	Female header, pole number 3 x 32
Slot	X2 - X5

Supply

Power supply	none
--------------	------

Mounting

Housing	4 thread M6, rear side
Assembly kit	enclosed
Grounding	1 thread M6, rear side
Assembly kit	enclosed

Environmental conditions

MTBF ³⁾	47,872,504 hours / 5,464 years
Dimensions (width x height x depth)	229 mm x 219 mm x 21 mm
Weight / incl. packaging	0.66 kg / 0.85 kg

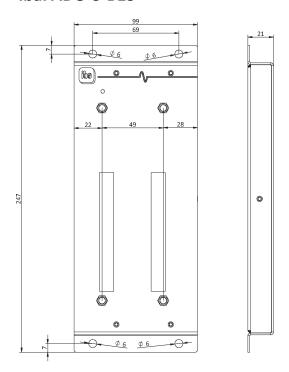
Issue 1.7 104

³⁾ MTBF (mean time between failure) according to Telcordia Issue 3 (SR232) Reliability Prediction Procedure of Electronic Equipment (Issue 3 Jan. 2011)

12.1.2 ibaPADU-S-B1S

Backplane panel for mounting 1 central unit and 1 I/O module.

12.1.2.1 Scope of delivery – ibaPADU-S-B1S


The scope of delivery of the *ibaPADU-S-B1S* backplane panel includes:

- Backplane panel
- Assembly kit

105

12.1.2.2 Dimensions - ibaPADU-S-B1S

12.1.2.3 Grounding – ibaPADU-S-B1S

See **₹** Grounding – ibaPADU-S-B4S, page 103.

12.1.2.4 Technical data – ibaPADU-S-B1S

Short description

Product name	ibaPADU-S-B1S
Description	Backplane panel for 1 central unit and 1 I/O module from the iba modular system; with mounting angles
Order number	10.124002

Interface central unit

Number	1
Connection technology	Female header, pole number 3 x 32
Slot	X1

Interface I/O modules

Number	1
Connection technology	Female header, pole number 3 x 32
Slot	X2

Issue 1.7 106

Supply

Power supply	none
1 ower supply	Hone

Mounting

Housing	4 through holes M6
Assembly kit	-
Grounding	1 thread M6, rear side
Assembly kit	enclosed

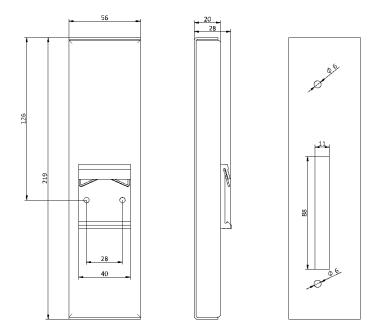
Design

Dimensions (width x height x depth)	99 mm x 247 mm x 21 mm
Weight / incl. packaging	0.32 kg / 0.43 kg

12.2 Mounting system for central unit

12.2.1 ibaPADU-S-B

Mounting panel with DIN rail clip for 1 central unit (without I/O modules).



12.2.1.1 Scope of delivery – ibaPADU-S-B

The scope of delivery of the mounting system for the *ibaPADU-S-B* central unit includes:

Mounting panel

12.2.1.2 Dimensions – ibaPADU-S-B

(dimensions in mm)

12.2.1.3 Grounding – ibaPADU-S-B

The grounding must be done via the DIN rail.

12.2.1.4 Technical data – ibaPADU-S-B

Short description

Product name	ibaPADU-S-B
Description	Mounting panel for 1 central unit from the iba modular system; with DIN rail clip
Order number	10.124001

Mounting

Panel	on DIN rail according to EN 50022 (TS 35, DIN Rail 35)
Assembly kit	-
Grounding	via DIN rail
Assembly kit	-

Design

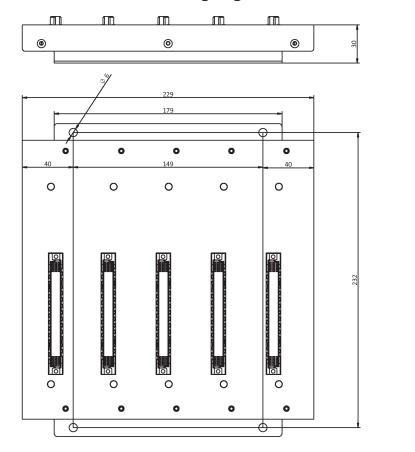
Dimensions (width x height x depth)	56 mm x 219 mm x 28 mm
Weight / incl. packaging	0.17 kg / 0.26 kg

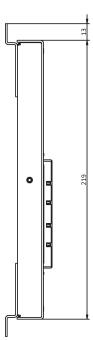
Issue 1.7 108

12.3 Mounting systems for ibaPADU-S-B4S

12.3.1 Mounting angles

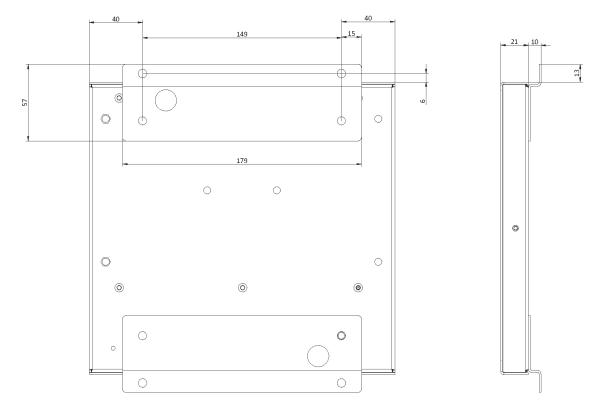
Mounting angles for mounting an iba modular system in a cabinet, 2 pieces, matching for *ibaPADU-S-B4S* (10.124000).


1 set (2 pieces) is needed for one backplane panel.



12.3.1.1 Scope of delivery – mounting angles

■ 2 pieces mounting angles (1 set)


12.3.1.2 Dimensions – mounting angle

iba

(dimensions in mm)

(dimensions in mm)

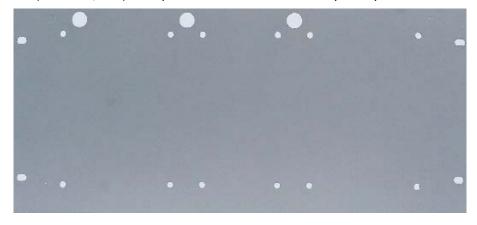
12.3.1.3 Technical data – mounting angle

Short description

Product name	Mounting angles for iba modular system
Description	1 set (2 pieces) mounting angles, matching for backplane panel ibaPADU-S-B4S, for a front side mounting of the backplane
Order number	10.124006

Mounting

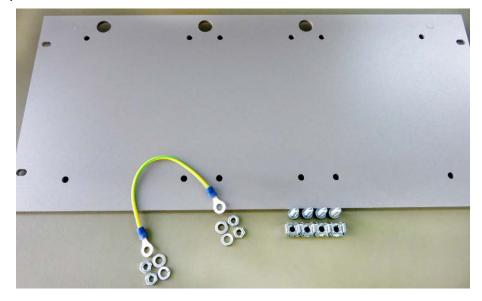
Angle	4 through holes M6
Assembly kit	-


Design

Dimensions (width x height x depth)	179 mm x 57 mm x 10 mm
Weight / incl. packaging	0.091 kg / 0.092 kg

Issue 1.7 110 iba

12.3.2 Mounting panel 19"


Mounting panel (483 mm/19") for up to 2 *ibaPADU-S-B4S* backplane panels.

12.3.2.1 Scope of delivery – mounting panel 19"

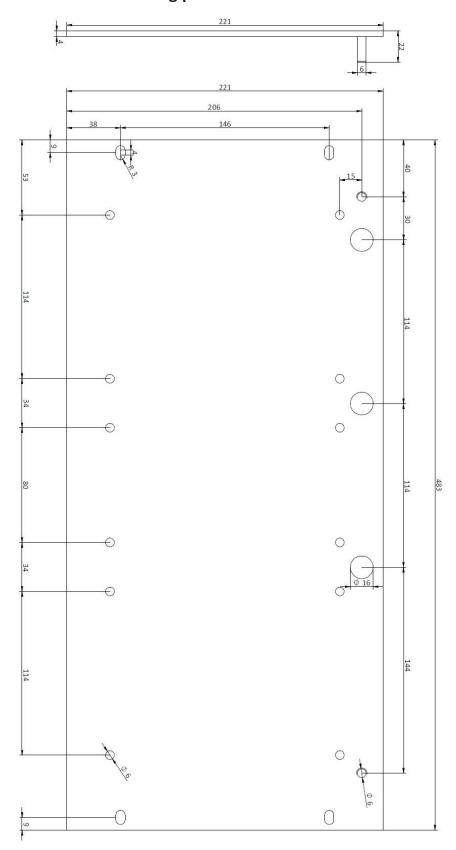
The scope of delivery of the mounting panel includes:

- Mounting panel
- Assembly kit

Issue 1.7 111 iba

12.3.2.2 Mounting backplane panel

Up to 2 *ibaPADU-S-B4S* backplane panels can be mounted on the 19" mounting panel. The mounting of one backplane panel is possible either in the center or on the right or left side.


Mounting centered

Mounting on the right

12.3.2.3 Dimensions – mounting panel 19"

(dimensions in mm)

12.3.2.4 Grounding – mounting panel 19"

The following variants are available for grounding.

Variant 1:

One backplane panel and grounding of the mounting panel are on the same side.

After the backplane panel is mounted on the 19" mounting panel, the backplane panel must be grounded via the mounting panel. Screw the grounding cable on the back of the mounting panel to the backplane panel. Use the screw connection, see **7** Grounding – ibaPADU-S-B4S, page 103.

Connect the cable to the next threaded bolt of the mounting panel. The grounding of the mounting panel is also connected to the threaded bolt.

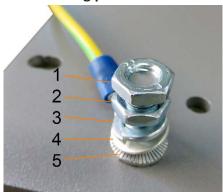
Both grounding cables are attached to the threaded bolt as shown.

Issue 1.7 114

Variant 2:

One backplane panel and grounding of the mounting panel are **not on the same side**.

The backplane panel is mounted on the right or left side of the mounting panel, the grounding of the mounting panel is connected on the respective other side. Ground the backplane panel at the next threaded bolt of the mounting panel. The grounding of the mounting panel can then be connected at the opposite side. See figure:



Variant 3:

Two backplane panels are mounted.

Ground the two backplane panels at the next threaded bolt on the left or right. The grounding of the mounting panel must be connected to one of the threaded bolts.

Connection for grounding the 19" mounting panel

- 1 Hexagon nut/lock nut
- 2 Hexagon nut
- 3 Spring lock washer
- 4 Ground wire with cable lug
- 5 Contact washer

12.3.2.5 Technical data – mounting panel 19"

Short description

Product name	Mounting panel 19" for iba modular system
Description	Mounting panel (483 mm/19") for up to 2 ibaPADU-S-B4S backplane panels
Order number	10.124005

Mounting

Panel	4 through holes	
Assembly kit	enclosed	
Grounding	2 threaded bolts M6, rear side	
Assembly kit	enclosed	

Design

Height units (HU)	5
Dimensions (width x height x depth)	483 mm x 221 mm x 22 mm
Weight / incl. packaging	1.2 kg / 1.4 kg

12.3.3 Module carrier

Module carrier for mounting 1 backplane panel ibaPADU-S-B4S.

Module carrier with power supply

The included table power supply can be conveniently stored in the bottom of the module carrier.

12.3.3.1 Scope of delivery – module carrier

The scope of delivery for the module carrier includes:

- Module carrier
- Table power supply 24 V DC / 5 A

Issue 1.7 116

12.3.3.2 Dimensions – module carrier

Width x height x depth: 230 mm x 435 mm x 200 mm

12.3.3.3 Technical data – module carrier

Short description

Product name	Module carrier for iba modular system
Description	Module carrier for mounting 1 backplane panel <i>ibaPADU-S-B4S</i> ; incl. power supply 24 V DC / 5 A (10.800007)
Order number	10.124007

Design

Dimensions (width x height x depth)	230 mm x 435 mm x 200 mm
Weight	1.8 kg

Accessories

Power supply 24 V DC / 5 A	10.800007
----------------------------	-----------

12.4 Terminal blocks

16 pin RM 5.08 terminal block WAGO		
Order number	52.000023	000000000000000000000000000000000000000

12 pin RM 3.81 terminal block PHOENIX		
Order number	52.000024	4

2 pin RM 5.08 terminal block WAGO		
Order number	52.000022	

I/O modules iba modular system 12.5

Product	Order no.	Remark
ibaMS3xAI-1A	10.124600	3 analog inputs, 1 A AC
ibaMS3xAI-5A	10.124610	3 analog inputs, 5 A AC
ibaMS3xAI-1A/100A	10.124620	3 analog inputs, 1 A AC/100 A DC
ibaMS4xAI-380VAC	10.124521	4 analog inputs, 380 V AC
ibaMS8xAI-110VAC	10.124500	8 analog inputs, 110 V AC
ibaMS16xAI-10V	10.124100	16 analog inputs, ±10 V
ibaMS16xAI-10V-HI	10.124101	16 analog inputs, ±10 V (high impedance)
ibaMS16xAI-24V	10.124102	16 analog inputs, ±24 V
ibaMS16xAI-24V-HI	10.124103	16 analog inputs, ±24 V (high impedance)
ibaMS16xAI-20mA	10.124110	16 analog inputs, ±20 mA
ibaMS16xDI-220V	10.124200	16 digital inputs, ±220 V
ibaMS16xDI-24V	10.124201	16 digital inputs, ±24 V
ibaMS32xDI-24V	10.124210	32 digital inputs, ±24 V
ibaMS4xUCO	10.124310	Counter module, 4 inputs
ibaMS8xICP	10.124300	8 inputs for ICP/IEPE vibration sensors
ibaMS16xAO-10V	10.124150	16 analog outputs, ±10 V
ibaMS16xAO-20mA	10.124160	16 analog outputs, ±20 mA
ibaMS32xDO-24V	10.124260	32 digital outputs, 24 V
ibaMS16xDIO-24V	10.124220	16 digital inputs and outputs, respectively, 24 V
ibaMS4xADIO	10.124120	4 analog inputs/outputs respectively +
		4 digital inputs/outputs respectively

FO cards and **FO** cables 12.6

Below you will find an overview of suitable FO cards and FO cables for the operation of ibaPQU-S.

Product	Order no.	Remark
ibaFOB-io-D	11.115810	PCI card (1 input, 1 output)
ibaFOB-2i-D	11.115710	PCI card (2 inputs)
ibaFOB-2io-D	11.115800	PCI card (2 inputs, 2 outputs)
ibaFOB-4i-D	11.115700	PCI card (4 inputs)
ibaFOB-4o-D		Extension module (4 outputs)
- For PCI slot (long)	11.116201	For all ibaFOB-D cards as output module or for mir-
- For rackline slot (short)	11.116200	roring the inputs
ibaFOB-io-Dexp	11.118020	PCI-Express card (1 input, 1 output)
ibaFOB-2i-Dexp	11.118030	PCI-Express card (2 inputs)
ibaFOB-2io-Dexp	11.118010	PCI-Express card (2 inputs, 2 outputs)

Issue 1.7 118 iba

Product	Order no.	Remark
ibaFOB-4i-Dexp	11.118000	PCI-Express card (4 inputs)
ibaFOB-io-ExpressCard	11.117000	For measuring with the notebook
ibaFOB-io-USB	11.117010	For measuring with the notebook

iba also offers suitable FO cables in different designs and lengths. Here is an example of a common cable in duplex and 5 m length.

Product	Order no.	Remark
FO/p2-5	50.102050	5 m duplex FO cable

Note

In addition to conventional multimode cable types OM1 (62.5/125 μ m) and OM2 (50/125 μ m), the other cable types OM3, OM4 and OM5 of the 50/125 μ m fiber can also be used.

12.7 iba software

Below you will find license examples for data acquisition with *ibaPDA* and data analysis with *ibaAnalyzer*.

Product	Order no.	Remark
ibaPDA-1024	30.771024	For up to 1024 signals
ibaPDA-2048	30.772048	For up to 2048 signals
ibaAnalyzer	33.010000	Offline- and online analysis software with free license if used to analyze *.dat files generated by licensed iba software.

You can find further accessories in our online catalog at www.iba-ag.com.

Issue 1.7 119

13 Appendix

13.1 Calculating characteristic values

Here you will find the formulas for calculating the characteristic values.

13.1.1 RMS (Root Mean Square)

$$U_{RMS} = \sqrt{\frac{1}{t_n - t_0} \int_{t_0}^{t_n} u^2(t) dt}$$

$$I_{RMS} = \sqrt{\frac{1}{t_n - t_0} \int_{t_0}^{t_n} i^2\left(t\right) dt}$$

13.1.2 Rectified value

$$U_{rect} = \frac{1}{t_n - t_0} \int_{t_0}^{t_n} |u(t)| dt$$

$$I_{rect} = \frac{1}{t_n - t_0} \int_{t_0}^{t_n} |i\left(t\right)| dt$$

13.1.3 Peak value

$$U_{peak} = max |u(t)| \quad t \in [t_0, t_n]$$

$$I_{peak} = \max \left| i\left(t \right) \right| \quad t \in \left[t_0, t_n \right]$$

13.1.4 Form factor

$$U_{Form} = \frac{U_{RMS}}{U_{rect}}$$

$$I_{Form} = \frac{I_{RMS}}{I_{rect}}$$

13.1.5 Crest factor

$$U_{Crest} = \frac{U_{peak}}{U_{RMS}}$$

$$I_{Crest} = \frac{I_{peak}}{I_{RMS}}$$

13.1.6 Frequency

$$f_n = \frac{N_{ZC}}{2 \cdot \left(t_{N_{ZC}} - t_0\right)}$$

$$N_{ZC} = Number\ of\ Zero\ Crossings$$

120

13.1.7 Harmonics, interharmonics, phase angle

Calculation with FFT algorithm

13.1.8 THD (Total Harmonic Distorsion)

$$THD_{U} = \sqrt{\sum_{n=2}^{x} \left(\frac{U_{harm_{n}}}{U_{harm_{1}}}\right)^{2}}$$

$$THD_{I} = \sqrt{\sum_{n=2}^{x} \left(\frac{I_{harm_{n}}}{I_{harm_{1}}}\right)^{2}}$$

13.1.9 Flicker

Short term

Flicker algorithm

Long term

$$P_{LT} = \sqrt[3]{\frac{\sum_{i=0}^{N-1} P_{st}^{3}}{\sum_{i=0}^{N} P_{st}^{3}}}$$

13.1.10 Power / Energy

Two conductors / per phase

Active power

$$P = \frac{1}{t_n - t_0} \int_{t_0}^{t_n} P_x(t) dt$$

$$P_x(t) = u_{10}(t) \cdot i_1(t)$$

Apparent power

$$S = U_{10RMS} \cdot I_{1RMS}$$

Total reactive power

$$Q_{tot} = \sqrt{S^2 - P^2}$$

Fundamental reactive power

$$Q_{\varphi} = U_{RMS} \cdot I_{RMS} \cdot \sin(\varphi_u - \varphi_i)$$

Distortion reactive power

$$Q_D = \sqrt{Q_{tot}^2 - Q_{\varphi}^2}$$

Power factor

$$\lambda = \frac{P}{S}$$

Cos ф

$$\cos\left(\varphi\right) = \cos\left(\varphi_u - \varphi_i\right)$$

Three conductors

Active power

$$P_{\Sigma} = P_{10} + P_{20} + P_{30}$$

$$P_{10} = U_{10} \cdot I_1, \dots$$

$$U_{10} = \frac{1}{3} (u_{12} - u_{31})$$

$$U_{20} = \frac{1}{3} (u_{23} - u_{12})$$

$$U_{30} = \frac{1}{3} (u_{31} - u_{23})$$

Apparent power

$$S_{\Sigma} = \sqrt{(U_{10}^2 + U_{20}^2 + U_{30}^2)} \cdot \sqrt{(I_1^2 + I_2^2 + I_3^2)}$$

Total reactive power

$$Q_{tot\Sigma} = \sqrt{S_{\Sigma}^2 - P_{\Sigma}^2}$$

Fundamental reactive power

$$Q_{\varphi\Sigma} = Q_{\varphi10} + Q_{\varphi20} + Q_{\varphi30}$$

Distortion reactive power

$$Q_{D\Sigma} = Q_{D10} + Q_{D20} + Q_{D30}$$

Power factor

$$\lambda_{\Sigma} = \frac{P_{\Sigma}}{S_{\Sigma}}$$

Cos Φ

Per phase:

$$\cos\left(\varphi\right) = \cos\left(\varphi_u - \varphi_i\right)$$

Total grid: no calculation possible

Four conductors

Active power

$$P_{\Sigma} = P_{10} + P_{20} + P_{30} + P_{40}$$

$$P_{40} = U_{40} \cdot I_N$$

$$U_{10} = \frac{1}{4} (U_{12} + U_{13} + U_{1N})$$

$$U_{20} = \frac{1}{4} (U_{21} + U_{23} + U_{2N})$$

$$U_{30} = \frac{1}{4} (U_{31} + U_{32} + U_{3N})$$

$$U_{40} = U_{N0} = -(U_{10} + U_{20} + U_{30})$$

$$U_{N0} = \frac{1}{4} (U_{N1} + U_{N2} + U_{N3})$$

Apparent power

$$S_{\Sigma} = \sqrt{(U_{10}^2 + U_{20}^2 + U_{30}^2 + U_{40}^2)} \cdot \sqrt{(I_1^2 + I_2^2 + I_3^2 + I_N^2)}$$

122

Total reactive power

$$Q_{tot\Sigma} = \sqrt{S_{\Sigma}^2 - P_{\Sigma}^2}$$

Fundamental reactive power

$$Q_{\varphi\Sigma} = Q_{\varphi10} + Q_{\varphi20} + Q_{\varphi30} + Q_{\varphi40}$$

Distortion reactive power

Per phase:

$$Q_{D10} = \sqrt{Q_{tot10}^2 - Q_{\varphi 10}^2}, \dots$$

Total grid:

$$Q_{D\Sigma} = Q_{D10} + Q_{D20} + Q_{D30} + Q_{D40}$$

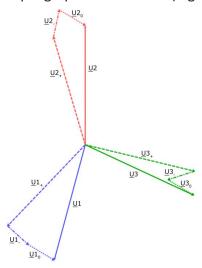
Power factor

$$\lambda_{\Sigma} = \frac{P_{\Sigma}}{S_{\Sigma}}$$

Cos ф

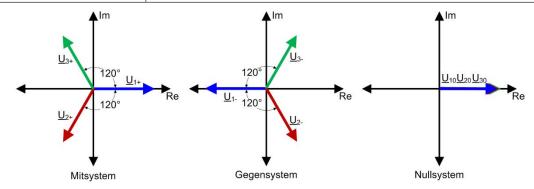
Per phase:

$$\cos\left(\varphi\right) = \cos\left(\varphi_u - \varphi_i\right)$$


Total grid: no calculation possible

Neutral conductor current (if physically not available)

$$i_N(t) = -(i_1(t) + i_2(t) + i_3(t))$$


13.1.11 Voltage balance / Unbalance

The following figure shows an example graph from ibaPDA (high asymmetry!).

In a symmetrical grid the arrows of the respective phase are located directly over each other.

Name	Description
<u>U</u> #	RMS value of the phase
<u>U</u> # ₊	Percentage of the positive sequence component
<u>U</u> # _	Percentage of the negative sequence component
<u>U</u> # 0	Percentage of the zero sequence component

Positive sequence component

$$\underline{U}_1 = \frac{1}{3} \left(\underline{U}_R + \underline{U}_S \cdot \underline{a} + \underline{U}_T \cdot \underline{a}^2 \right)$$

Negative sequence component

$$\underline{U}_2 = \frac{1}{3} \left(\underline{U}_R + \underline{U}_S \cdot \underline{a}^2 + \underline{U}_T \cdot \underline{a} \right)$$

Zero sequence component

$$\underline{U}_3 = \frac{1}{3} (\underline{U}_R + \underline{U}_S + \underline{U}_T)$$

$$\underline{a} = e^{j120^{\circ}}$$

$$a^2 = e^{j240^{\circ}}$$

The voltages specified here are complex numbers and consist of an amount and an angle.

Negative sequence unbalance

$$Negative\ Sequence\ Ratio = \left| \frac{\underline{U}_2}{\underline{\overline{U}}_1} \right|$$

Zero sequence unbalance

$$Zero\,Sequence\,Ratio = \left| \frac{\underline{U}_3}{\underline{U}_1} \right|$$

13.1.12 Interference factor

■ TIF/THFF

$$\begin{split} TIF &= \sqrt{\sum_{n=1}^{50} \left(5 \cdot n \cdot f_1 \cdot Factor_n \cdot X_n\right)^2} \\ THFF &= \sqrt{\sum_{n=1}^{50} \left(\frac{n \cdot f_1}{800 Hz} \cdot Factor_n \cdot X_n\right)^2} \end{split}$$

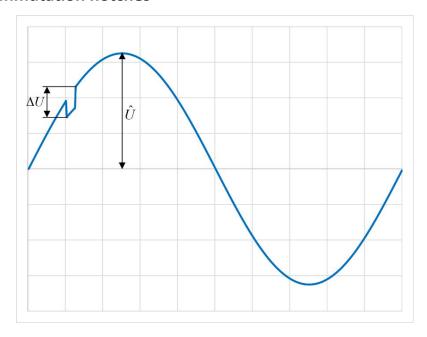
$$IF Square = \sqrt{\sum_{n=1}^{50} Factor_n \cdot X_n^2}$$

$$\underline{50}$$

$$IF \, Linear = \sum_{n=1}^{50} Factor_n \cdot X_n$$

 f_1 : Nominal power system frequency (50 Hz or 60 Hz)

Factor : Weighting factor for harmonic


Various methods are available for normalization of X_{n} .

1.
$$X_n = \frac{Harmonic_n}{Harmonic_1}$$

2.
$$X_n = \frac{Harmonic_n}{RMS}$$

3.
$$X_n = \frac{Harmonic_n}{1V \text{ o. } 1A}$$

13.1.13 Commutation notches

Commutation notch

$$d_{Com} = \frac{\Delta U}{\hat{U}} \cdot 100\%$$

 ΔU = voltage drop

 \hat{U} = peak value of the fundamental wave of the nominal voltage

13.1.14 Events

Voltage dip

Signal	Description
Dip event (digital)	Active, if the half period RMS value of at least one phase is lower than the limit.
Dip event Start	Current_time – start_time, in seconds, while the event is running.
Dip event Duration	Previous duration of events, in seconds, while the event is running.
Dip event Min	Minimum half period RMS value, in V, while the event is running.

The limit is increased by the hysteresis, if the event is active.

The limit is calculated as percentage value of the nominal voltage or as percentage value of the floating reference value.

$$U_{sr(n)} = 0.9967 \cdot U_{sr(n-1)} + 0.0033 \cdot U_{(10/12)rms}$$

Note: this value is calculated for each phase separately.

Voltage swell

Signal	Description
Swell event (digital)	Active, if the half period RMS value of at least one phase is higher than the limit.
Swell event Start	Current _time - start_time, in seconds, while the event is running.
Swell event Duration	Previous duration of events, in seconds, while the event is running.
Swell event Max	Maximum half period RMS value, in V, while the event is running.

The limit is reduced by the hysteresis, if the event is active.

The limit is calculated as percentage value of the nominal voltage or as percentage value of the floating reference value.

$$U_{sr(n)} = 0,9967 \cdot U_{sr(n-1)} + 0,0033 \cdot U_{(10/12)rms}$$

Note: this value is calculated for each phase separately.

Voltage interruption

Signal	Description
Interruption event (digital)	Active, if the half period RMS value of all phases of a supply voltage grid is lower than the limit.
Interruption event Start	Current_time – start_time, in seconds, while the event is running.

Signal	Description
Interruption event Duration	Previous duration of events, in seconds, while the event is running.
Interruption event Min	Minimum half period RMS value, in V, while the event is running.

The limit is increased by the hysteresis, if the event is active.

The limit is calculated as percentage value of the nominal voltage.

Mains signalling

Signal	Description
Mains signalling event (digital)	Active, if the RMS value of the mains signalling voltage on at least one phase is higher than the limit set.
Mains signalling event Start	Current_time – start_time, in seconds, while the event is running.
Mains signalling event Duration	Previous duration of events, in seconds, while the event is running.
Mains signalling event Max	Maximum RMS value of the mains signalling voltage, in V, while the event is running.

Rapid voltage change (RVC)

Signal	Description
Rapid voltage change (digital)	Active, if the half period RMS value of at least one phase is beyond the area Floating_average – limit or Floating_average + limit.
RVC event Start	Current_time – start_time in seconds.
RVC event Duration	Duration of the event in seconds.
RVC event Delta Umax	Maximum deviation from the floating average at the starting point of the event, in V.
RVC event Delta Uss	Change in the floating average between start and 1 second after the event, in V.

The floating average is the arithmetic average of the last 100 (at 50 Hz) or 120 (at 60 Hz) half period RMS values. This corresponds to the average of the last second.

The limit is reduced by the hysteresis while the event is active.

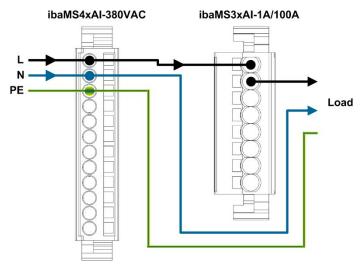
Note

RVC values

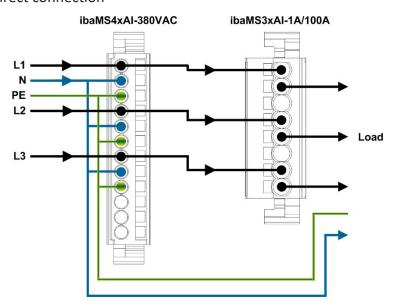
The event values are issued only about 1 second after the end of an event for a 10/12 period pulse, otherwise, all values are 0. The reason for this is the rule that this event must not be issued, if there is an overvoltage or undervoltage during the event.

13.2 Connection examples

The examples mentioned here refer to a grid with 230 V and 50 Hz. Furthermore, the consumers to be measured are directly connected to the *ibaPQU-S* system. If the values voltage and current to be measured are higher, appropriate instrument transformers need to be used.

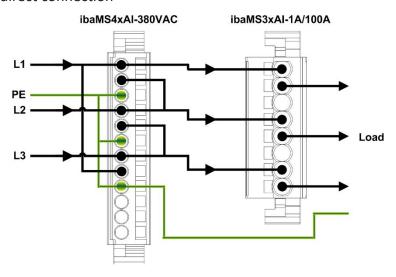

Note

The wiring always needs to be carried out by a qualified electrician in order to guarantee electrical safety.


13.2.1 Connection example 1-pase

1-phase direct connection

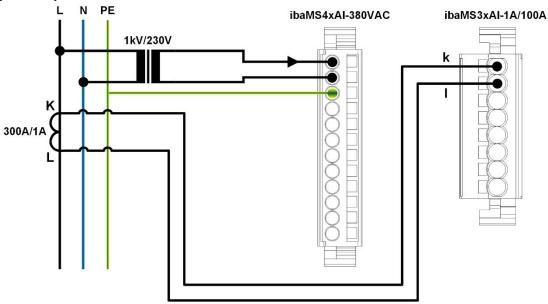
13.2.2 Connection example star connection


Star connection direct connection

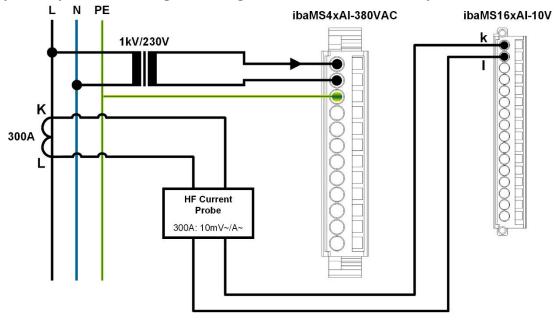
128

13.2.3 Connection example delta connection

Delta connection direct connection



13.2.4 Connection with instrument transformers


It is important that the instrument transformers are Open Loop transformers. This means that a sinus signal on the primary side also needs to exist on the secondary side. The instrument transformers also need to offer a broadband frequency transmission in order to capture harmonics or interharmonics up to the 50th harmonic.

The terminals of the primary winding are labeled "K" and "L" or "P1" and "P2", the terminals of the secondary winding are labeled "k" and "I" or "S1" and "S2". The polarity must be applied so that the "current flow direction" is from K to L.

Example of 1-phase connection

Example of 1-phase measuring with a Rogowski coil or a current clamp

130

14 Certificate

COMPLIANCE TEST ACCORDING TO IEC 61000-4-30 Ed.3 (2015)

ibaPQU-S

Measurement accuracy and measurement methods for the following quantities were tested on conformity with IEC 61000-4-30 Ed.3 (2015). This includes all tests as required by IEC 62586-2 Ed.1 (2013) and specific additional tests.

Power Quality Parameter	Class A Compliance
Power frequency	Yes
Magnitude of supply voltage	Yes
Flicker	Yes
Voltage interruptions, dips and swells	Yes
Supply voltage unbalance	Yes
Voltage harmonics	Yes
Voltage interharmonics	Yes
Mains signalling	Yes
Flagging	Yes
Clock uncertainty	Yes
Variations due to external influence quantities	Yes
Magnitude of current	Yes
Current harmonics	Yes
Current interharmonics	Yes

One sample with serial "000061" and firmware "PQ Core 1.00" was tested with a declared input voltage and current of $U_{\rm din} = 230$ V and $I_{\rm nom} = 2.5$ A and a nominal frequency of $f_{\rm nom} = 50$ Hz.

The external clock synchronization was performed with an external GPS-clock (Meinberg LANTIME M600 and GPS-antenna HF2015 GPS).

The manufacturer states that this sample is representative of the ibaPQU-S series.

Tested by

Dipl.-Ing. Robert Stiegler

Reviewed by:

-Ing. Jan Meyer

Confirmed by

Prof. Dr.-Ing. Peter Schegner

iba

Dresden, 01.03.2017

Technische Universitaet Dresden Faculty of Electrical and Computer Engineering Institute of Electrical Power Systems and High Voltage Engineering 01062 Dresden Germany

Technische Universität Dresden Institut für Elektrische Energieversorgung und Hochspannungstechnik 01062 Dresden

15 Support and contact

Support

Phone: +49 911 97282-14

Email: support@iba-ag.com

Note

If you need support for software products, please state the number of the license container. For hardware products, please have the serial number of the device ready.

Contact

Headquarters

iba AG Koenigswarterstrasse 44 90762 Fuerth Germany

Phone: +49 911 97282-0

Email: iba@iba-ag.com

Mailing address

iba AG Postbox 1828 D-90708 Fuerth, Germany

Delivery address

iba AG Gebhardtstrasse 10 90762 Fuerth, Germany

Regional and Worldwide

For contact data of your regional iba office or representative please refer to our web site:

www.iba-ag.com